fixpoint-theory-nov24/note.tex

46 lines
1.1 KiB
TeX

\documentclass{article}
\usepackage{xspace}
\usepackage{hyperref}
\usepackage{bm}
\usepackage[english]{babel}
\usepackage{amsthm}
\newcommand{\jh}[1]{{\leavevmode\color{blue!50!red}#1}}
\input{notation.tex}
\input{glossary.tex}
\pagenumbering{arabic}
\pagestyle{plain}
\newtheorem{theorem}{Theorem}
\begin{document}
% \maketitle
\definition{monotone}{define monotone}
\definition{image}{define set image}
\definition{completelattice}{define complete lattice}
Hello world\cite{tarskilatticetheoretical1955}
First, we generalize Knaster-Tarski Fixpoint Theorem.
$$\fixpointsOf(S)$$
\begin{theorem}[Tarski-Knaster Fixpoint Theorem~\cite{tarskilatticetheoretical1955}]
For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle \fixpointsOf(o), \lte \rangle$ is a \CompleteLattice.
\end{theorem}
\begin{theorem}
For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle o\imageNoLink{\L}, \lte \rangle$ is a \CompleteLattice.
\end{theorem}
\begin{proof}
foo
\end{proof}
\bibliographystyle{plain}
\bibliography{references}
\end{document}