\documentclass{article} \usepackage{xspace} \usepackage{hyperref} \usepackage{bm} \usepackage[english]{babel} \usepackage{amsthm} \newcommand{\jh}[1]{{\leavevmode\color{blue!50!red}#1}} \input{notation.tex} \input{glossary.tex} \pagenumbering{arabic} \pagestyle{plain} \newtheorem{theorem}{Theorem} \begin{document} % \maketitle \definition{monotone}{define monotone} \definition{image}{define set image} \definition{completelattice}{define complete lattice} Hello world\cite{tarskilatticetheoretical1955} First, we generalize Knaster-Tarski Fixpoint Theorem. $$\fixpointsOf(S)$$ \begin{theorem}[Tarski-Knaster Fixpoint Theorem~\cite{tarskilatticetheoretical1955}] For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle \fixpointsOf(o), \lte \rangle$ is a \CompleteLattice. \end{theorem} \begin{theorem} For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle o\imageNoLink{\L}, \lte \rangle$ is a \CompleteLattice. \end{theorem} \begin{proof} foo \end{proof} \bibliographystyle{plain} \bibliography{references} \end{document}