2024-11-01 14:19:32 -06:00
\documentclass { article}
2024-11-04 11:03:36 -07:00
\usepackage { xspace}
2024-11-01 14:19:32 -06:00
\usepackage { hyperref}
\usepackage { bm}
\usepackage [english] { babel}
2024-11-04 11:03:36 -07:00
\usepackage { amsthm}
2024-11-01 14:19:32 -06:00
\newcommand { \jh } [1]{ { \leavevmode \color { blue!50!red} #1} }
\input { notation.tex}
\input { glossary.tex}
\pagenumbering { arabic}
\pagestyle { plain}
\newtheorem { theorem} { Theorem}
\begin { document}
% \maketitle
2024-11-04 11:03:36 -07:00
\definition { monotone} { define monotone}
\definition { image} { define set image}
\definition { completelattice} { define complete lattice}
2024-11-01 14:19:32 -06:00
Hello world\cite { tarskilatticetheoretical1955}
First, we generalize Knaster-Tarski Fixpoint Theorem.
$$ \fixpointsOf ( S ) $$
\begin { theorem} [Tarski-Knaster Fixpoint Theorem~\cite { tarskilatticetheoretical1955} ]
2024-11-04 11:03:36 -07:00
For a \Monotone function $ o $ over a \CompleteLattice $ \langle \L , \lte \rangle $ , we have that $ \langle \fixpointsOf ( o ) , \lte \rangle $ is a \CompleteLattice .
2024-11-01 14:19:32 -06:00
\end { theorem}
2024-11-04 11:03:36 -07:00
\begin { theorem}
For a \Monotone function $ o $ over a \CompleteLattice $ \langle \L , \lte \rangle $ , we have that $ \langle o \imageNoLink { \L } , \lte \rangle $ is a \CompleteLattice .
\end { theorem}
\begin { proof}
foo
\end { proof}
2024-11-01 14:19:32 -06:00
\bibliographystyle { plain}
\bibliography { references}
\end { document}