This commit is contained in:
parent
6f4171a558
commit
e8f348f060
14
glossary.tex
14
glossary.tex
|
@ -1 +1,13 @@
|
|||
\newcommand{\glsMonotone}{\hyperlink{glossary:monotone}{monotone}}
|
||||
\newcommand{\definition}[2]{\hypertarget{glossary:#1}{#2}}
|
||||
\newcommand{\definitionLink}[2]{\hyperlink{glossary:#1}{#2}\xspace}
|
||||
|
||||
|
||||
\newcommand{\Monotone}{\definitionLink{monotone}{monotone}}
|
||||
\newcommand{\Image}{\definitionLink{image}{monotone}}
|
||||
\let\imageNoLink\image
|
||||
\renewcommand{\image}[1]{\imageNoLink{#1}}
|
||||
\newcommand{\CompleteLattice}{\definitionLink{completelattice}{complete lattice}}
|
||||
|
||||
|
||||
\let\fixpointsOfNoLink\fixpointsOf{}
|
||||
\renewcommand{\fixpointsOf}{\definitionLink{fixpointsOf}{\fixpointsOfNoLink}}
|
||||
|
|
|
@ -1 +1,4 @@
|
|||
\newcommand{\fixpointsOf}{\textbf{\textit{fix}}}
|
||||
\renewcommand{\L}{\mathcal{L}}
|
||||
\newcommand{\lte}{\preceq}
|
||||
\newcommand{\image}[1]{[#1]}
|
15
note.tex
15
note.tex
|
@ -1,8 +1,10 @@
|
|||
\documentclass{article}
|
||||
|
||||
\usepackage{xspace}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{bm}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsthm}
|
||||
\newcommand{\jh}[1]{{\leavevmode\color{blue!50!red}#1}}
|
||||
|
||||
\input{notation.tex}
|
||||
|
@ -16,7 +18,9 @@
|
|||
|
||||
% \maketitle
|
||||
|
||||
\hypertarget{glossary:monotone}{define monotone}
|
||||
\definition{monotone}{define monotone}
|
||||
\definition{image}{define set image}
|
||||
\definition{completelattice}{define complete lattice}
|
||||
|
||||
Hello world\cite{tarskilatticetheoretical1955}
|
||||
First, we generalize Knaster-Tarski Fixpoint Theorem.
|
||||
|
@ -25,9 +29,16 @@ $$\fixpointsOf(S)$$
|
|||
|
||||
|
||||
\begin{theorem}[Tarski-Knaster Fixpoint Theorem~\cite{tarskilatticetheoretical1955}]
|
||||
For a \glsMonotone function
|
||||
For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle \fixpointsOf(o), \lte \rangle$ is a \CompleteLattice.
|
||||
\end{theorem}
|
||||
|
||||
\begin{theorem}
|
||||
For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle o\imageNoLink{\L}, \lte \rangle$ is a \CompleteLattice.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
foo
|
||||
\end{proof}
|
||||
|
||||
\bibliographystyle{plain}
|
||||
\bibliography{references}
|
||||
|
||||
|
|
Loading…
Reference in New Issue