From e8f348f060dd7e505f0f8a8dbeb14e1a3cadc96e Mon Sep 17 00:00:00 2001 From: Spencer Killen Date: Mon, 4 Nov 2024 11:03:36 -0700 Subject: [PATCH] . --- glossary.tex | 14 +++++++++++++- notation.tex | 3 +++ note.tex | 15 +++++++++++++-- 3 files changed, 29 insertions(+), 3 deletions(-) diff --git a/glossary.tex b/glossary.tex index 335d418..5641d24 100644 --- a/glossary.tex +++ b/glossary.tex @@ -1 +1,13 @@ -\newcommand{\glsMonotone}{\hyperlink{glossary:monotone}{monotone}} +\newcommand{\definition}[2]{\hypertarget{glossary:#1}{#2}} +\newcommand{\definitionLink}[2]{\hyperlink{glossary:#1}{#2}\xspace} + + +\newcommand{\Monotone}{\definitionLink{monotone}{monotone}} +\newcommand{\Image}{\definitionLink{image}{monotone}} +\let\imageNoLink\image +\renewcommand{\image}[1]{\imageNoLink{#1}} +\newcommand{\CompleteLattice}{\definitionLink{completelattice}{complete lattice}} + + +\let\fixpointsOfNoLink\fixpointsOf{} +\renewcommand{\fixpointsOf}{\definitionLink{fixpointsOf}{\fixpointsOfNoLink}} diff --git a/notation.tex b/notation.tex index 98af044..ba93611 100644 --- a/notation.tex +++ b/notation.tex @@ -1 +1,4 @@ \newcommand{\fixpointsOf}{\textbf{\textit{fix}}} +\renewcommand{\L}{\mathcal{L}} +\newcommand{\lte}{\preceq} +\newcommand{\image}[1]{[#1]} \ No newline at end of file diff --git a/note.tex b/note.tex index 3a211b1..88112ad 100644 --- a/note.tex +++ b/note.tex @@ -1,8 +1,10 @@ \documentclass{article} +\usepackage{xspace} \usepackage{hyperref} \usepackage{bm} \usepackage[english]{babel} +\usepackage{amsthm} \newcommand{\jh}[1]{{\leavevmode\color{blue!50!red}#1}} \input{notation.tex} @@ -16,7 +18,9 @@ % \maketitle -\hypertarget{glossary:monotone}{define monotone} +\definition{monotone}{define monotone} +\definition{image}{define set image} +\definition{completelattice}{define complete lattice} Hello world\cite{tarskilatticetheoretical1955} First, we generalize Knaster-Tarski Fixpoint Theorem. @@ -25,9 +29,16 @@ $$\fixpointsOf(S)$$ \begin{theorem}[Tarski-Knaster Fixpoint Theorem~\cite{tarskilatticetheoretical1955}] - For a \glsMonotone function + For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle \fixpointsOf(o), \lte \rangle$ is a \CompleteLattice. \end{theorem} +\begin{theorem} + For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle o\imageNoLink{\L}, \lte \rangle$ is a \CompleteLattice. +\end{theorem} +\begin{proof} + foo +\end{proof} + \bibliographystyle{plain} \bibliography{references}