2024-11-01 14:19:32 -06:00
\documentclass { article}
2024-11-04 11:03:36 -07:00
\usepackage { xspace}
2024-11-01 14:19:32 -06:00
\usepackage { hyperref}
\usepackage { bm}
\usepackage [english] { babel}
2024-11-04 11:03:36 -07:00
\usepackage { amsthm}
2024-11-04 15:42:25 -07:00
\usepackage { amsmath}
\usepackage { mathtools}
2024-11-22 18:13:14 -07:00
\usepackage { hyperref}
\hypersetup {
colorlinks=true,
linkcolor=black,
filecolor=black,
urlcolor=black,
pdfpagemode=FullScreen,
}
2024-11-01 14:19:32 -06:00
\input { notation.tex}
\input { glossary.tex}
\pagenumbering { arabic}
\pagestyle { plain}
\newtheorem { theorem} { Theorem}
2024-11-07 06:47:25 -07:00
\newtheorem { corollary} { Corollary}
\newtheorem { lemma} { Lemma}
\newtheorem { proposition} { Proposition}
2024-11-01 14:19:32 -06:00
\begin { document}
% \maketitle
Hello world\cite { tarskilatticetheoretical1955}
First, we generalize Knaster-Tarski Fixpoint Theorem.
2024-11-22 18:13:14 -07:00
\section { Background}
\input { sections/background.tex}
\section { Content}
2024-11-07 06:47:25 -07:00
\begin { theorem} [Tarski-Knaster Fixpoint Theorem~\cite { tarskilatticetheoretical1955} ]\label { tarskitheorem}
2024-11-04 11:03:36 -07:00
For a \Monotone function $ o $ over a \CompleteLattice $ \langle \L , \lte \rangle $ , we have that $ \langle \fixpointsOf ( o ) , \lte \rangle $ is a \CompleteLattice .
2024-11-01 14:19:32 -06:00
\end { theorem}
2024-11-04 11:03:36 -07:00
\begin { theorem}
2024-11-07 06:47:25 -07:00
Trivial attempt using set preimage / image to attain LUB / GLB in image lattice does not work.
Consider antichain of 2 that map to a chain in image.
The antichain's LUB does maps to a third, distinct element which extends the chain to three in the image
If we attain LUB of preimage, then its not the least element :)
\end { theorem}
\begin { theorem} \label { imagelattice}
2024-11-04 11:03:36 -07:00
For a \Monotone function $ o $ over a \CompleteLattice $ \langle \L , \lte \rangle $ , we have that $ \langle o \imageNoLink { \L } , \lte \rangle $ is a \CompleteLattice .
\end { theorem}
\begin { proof}
2024-11-07 06:47:25 -07:00
Consider $ \langle \L ', \lte \rangle $ where
2024-11-04 15:42:25 -07:00
\begin { align*}
\L ' \define \{ x' ~|~ x \in \L \} \\
2024-11-07 06:47:25 -07:00
x' \lte y' \iff x \lte y \textrm { where } x, y \in \L
2024-11-04 15:42:25 -07:00
\end { align*}
Clearly, $ \langle \L ', \lte ' \rangle $ is a \CompleteLattice .
2024-11-07 06:47:25 -07:00
Combining $ \L $ and $ \L ' $ , we formulate $ \L ^ * $ :
2024-11-04 15:42:25 -07:00
\begin { align*}
2024-11-07 06:47:25 -07:00
\L ^ * & \define \{ \top ^ *, \bot ^ * \} \union \L \union \L ' \\
\forall x^ *, y^ * \in \L ^ *, x^ * \lte y^ * & \iff \begin { cases}
(x^ * = \bot ^ *) \lor (y^ * = \top ^ *), \\
\textrm { or } x, y \in \L , \\
\textrm { or } x', y' \in \L '
2024-11-04 15:42:25 -07:00
\end { cases}
\end { align*}
2024-11-07 06:47:25 -07:00
It is easy to show that $ \langle \L ^ * , \lte \rangle $ is a \CompleteLattice .
Consider the operator $ o ^ * $ that maps elements from $ \L $ to $ \L ' $ and every element in $ \L ' $ to itself.
\begin { align*}
o^ *(x) \define \begin { cases}
o(x)' & \textrm { if } x \in \L \\
x & \textrm { otherwise}
\end { cases}
\end { align*}
We have $ o ^ * \image { \L \union \L ' } \subseteq L' $ and $ \fixpointsOf ( o ^ * ) = o \image { \L } ' \union \{ \bot ^ * , \top ^ * \} $ .
By Tarski-Knaster Fixpoint Theorem (Theorem \ref { tarskitheorem} ), $ \fixpointsOf ( o ^ * ) $ is a \CompleteLattice .
Thus, $ o \image { \L } \union \{ \bot ^ * , \top ^ * \} $ is a \CompleteLattice . For any $ S \subseteq \L $ , we have $ \glb S \not \in \{ \bot ^ * , \top ^ * \} $ and $ \lub S \not \in \{ \bot ^ * , \top ^ * \} $ , thus $ \langle o \image { \L } , \preceq \rangle $ is a \CompleteLattice .
2024-11-04 11:03:36 -07:00
\end { proof}
2024-11-07 06:47:25 -07:00
The following follows directly from the contrapositive of Theorem \ref { imagelattice} .
\begin { corollary}
If $ \langle o \image { \L } , \lte \rangle $ is not a \CompleteLattice , then $ o $ is not \Monotone .
\end { corollary}
\begin { definition}
An approximator set $ H $ captures a nondeterministic approximator $ o $ if for each consistent pair $ ( x, y ) $
\begin { align*}
(H\image { (x, y)} _ 1, H\image { (x, y)} _ 2) = o(x, y)
\end { align*}
\end { definition}
\begin { theorem}
A nondeterministic approximator $ o $ has a set of
\end { theorem}
\begin { theorem}
For any nondeterministic approximator $ o $ , there exists an approximator set $ H $ s.t.\ gamma stable models correspond to n-stable models
\end { theorem}
\begin { proof}
foo
\end { proof}
2024-11-01 14:19:32 -06:00
\bibliographystyle { plain}
\bibliography { references}
\end { document}