This commit is contained in:
Spencer Killen 2024-11-04 15:42:25 -07:00
parent e8f348f060
commit c4da7b6c43
Signed by: sjkillen
GPG Key ID: 1DAA9D8D7C6ADD05
2 changed files with 20 additions and 2 deletions

View File

@ -1,4 +1,6 @@
\newcommand{\fixpointsOf}{\textbf{\textit{fix}}}
\renewcommand{\L}{\mathcal{L}}
\newcommand{\lte}{\preceq}
\newcommand{\image}[1]{[#1]}
\newcommand{\image}[1]{[#1]}
\newcommand{\define}{\coloneqq}
\newcommand{\union}{\cup}

View File

@ -5,6 +5,8 @@
\usepackage{bm}
\usepackage[english]{babel}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{mathtools}
\newcommand{\jh}[1]{{\leavevmode\color{blue!50!red}#1}}
\input{notation.tex}
@ -36,7 +38,21 @@ $$\fixpointsOf(S)$$
For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle o\imageNoLink{\L}, \lte \rangle$ is a \CompleteLattice.
\end{theorem}
\begin{proof}
foo
Consider $\langle \L', \lte' \rangle$ where
\begin{align*}
\L' \define \{ x' ~|~ x \in \L \} \\
x' \lte' y' \iff x \lte y \textrm{ where } x, y \in \L
\end{align*}
Clearly, $\langle \L', \lte' \rangle$ is a \CompleteLattice.
Combining $\L$ and $\L'$
\begin{align*}
\L^* \define \{ \top^*, \bot^* \} \union \L \union \L' \\
\forall x^*, y^* \in \L^*, x^* \lte y^* \iff \begin{cases}
(x^* = \bot^*) \lor (y^* = \top^*) \\
two \\
three
\end{cases}
\end{align*}
\end{proof}
\bibliographystyle{plain}