From c4da7b6c439ec8f4f440de4bd3abb770d61200b2 Mon Sep 17 00:00:00 2001 From: Spencer Killen Date: Mon, 4 Nov 2024 15:42:25 -0700 Subject: [PATCH] . --- notation.tex | 4 +++- note.tex | 18 +++++++++++++++++- 2 files changed, 20 insertions(+), 2 deletions(-) diff --git a/notation.tex b/notation.tex index ba93611..9ad9192 100644 --- a/notation.tex +++ b/notation.tex @@ -1,4 +1,6 @@ \newcommand{\fixpointsOf}{\textbf{\textit{fix}}} \renewcommand{\L}{\mathcal{L}} \newcommand{\lte}{\preceq} -\newcommand{\image}[1]{[#1]} \ No newline at end of file +\newcommand{\image}[1]{[#1]} +\newcommand{\define}{\coloneqq} +\newcommand{\union}{\cup} \ No newline at end of file diff --git a/note.tex b/note.tex index 88112ad..6bc17db 100644 --- a/note.tex +++ b/note.tex @@ -5,6 +5,8 @@ \usepackage{bm} \usepackage[english]{babel} \usepackage{amsthm} +\usepackage{amsmath} +\usepackage{mathtools} \newcommand{\jh}[1]{{\leavevmode\color{blue!50!red}#1}} \input{notation.tex} @@ -36,7 +38,21 @@ $$\fixpointsOf(S)$$ For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle o\imageNoLink{\L}, \lte \rangle$ is a \CompleteLattice. \end{theorem} \begin{proof} - foo + Consider $\langle \L', \lte' \rangle$ where + \begin{align*} + \L' \define \{ x' ~|~ x \in \L \} \\ + x' \lte' y' \iff x \lte y \textrm{ where } x, y \in \L + \end{align*} + Clearly, $\langle \L', \lte' \rangle$ is a \CompleteLattice. + Combining $\L$ and $\L'$ + \begin{align*} + \L^* \define \{ \top^*, \bot^* \} \union \L \union \L' \\ + \forall x^*, y^* \in \L^*, x^* \lte y^* \iff \begin{cases} + (x^* = \bot^*) \lor (y^* = \top^*) \\ + two \\ + three + \end{cases} + \end{align*} \end{proof} \bibliographystyle{plain}