We define a set ordering $\langle\powersetO(\LL), \lte\rangle$
s.t. for any $X, Y \subseteq\LL$
\begin{align*}
X \lte Y \textrm{ iff } (X \upclosure) \supseteq Y
\end{align*}
\end{definitionOf}
\begin{definitionOf}{chaincompleteposet}
We call \Poset$\langle\LL, \lte\rangle${\em chain-complete} if $\lub\LL$ is unique and in $\LL$ and for ever chain $C \subseteq\LL$
\begin{enumerate}
\item$\lub\LL$ is unique and in $\LL$, and
\item for every chain $C \subseteq\LL$, we have $\lub C \in\LL$
\end{enumerate}
\end{definitionOf}
\begin{definitionOf}{antisymmequiv}
Given a set $\powersetO(\LL)^2$, define $\antisymmequiv{\powersetO(\LL)^2}$ to be the set obtained by removing any elements $x \in\powersetO(\LL)^2$ s.t. $x \not= x \upprecision$.
\end{definitionOf}
\begin{remark}
The \Preorder$\langle\powersetO(\LL)^2, \lteSetLPrecision\rangle$ lacks \Antisymmetry, thus it is not a \Poset.
We can construct and equivalence relation $\equiv$ based on the \Antisymmetry condition:
$x \equiv x' \textrm{ iff } x \lteSetLPrecision x' \textrm{ and } x' \lteSetLPrecision x$.
Each equivalence class $[x]$ can be uniquely represented by $x \upprecision$. Thus, another way of viewing