\begin{definitionOf}{chain} Given a \Poset $\langle \LL, \lte \rangle$, a {\em chain} is a (possibly empty) set $C \subseteq \LL$ that is totally ordered, that is, for all $x, y \in C$ either $x \lte y$ or $y \lte x$. \end{definitionOf} \begin{definitionOf}{setordering} Given a preorder, $\langle \LL, \lte \rangle$ We define a set ordering $\langle \powersetO(\LL), \lte \rangle$ s.t. for any $X, Y \subseteq \LL$ \begin{align*} X \lte Y \textrm{ iff } (X \upclosure) \supseteq Y \end{align*} \end{definitionOf} \begin{definitionOf}{chaincompleteposet} We call \Poset $\langle \LL, \lte \rangle$ {\em chain-complete} if $\lub \LL$ is unique and in $\LL$ and for ever chain $C \subseteq \LL$ \begin{enumerate} \item $\lub \LL$ is unique and in $\LL$, and \item for every chain $C \subseteq \LL$, we have $\lub C \in \LL$ \end{enumerate} \end{definitionOf} \begin{definitionOf}{antisymmequiv} Given a set $\powersetO(\LL)^2$, define $\antisymmequiv{\powersetO(\LL)^2}$ to be the set obtained by removing any elements $x \in \powersetO(\LL)^2$ s.t. $x \not= x \upprecision$. \end{definitionOf} \begin{remark} The \Preorder $\langle \powersetO(\LL)^2, \lteSetLPrecision \rangle$ lacks \Antisymmetry, thus it is not a \Poset. We can construct and equivalence relation $\equiv$ based on the \Antisymmetry condition: $x \equiv x' \textrm{ iff } x \lteSetLPrecision x' \textrm{ and } x' \lteSetLPrecision x$. Each equivalence class $[x]$ can be uniquely represented by $x \upprecision$. Thus, another way of viewing $\langle \antisymmequiv{\powersetO(\LL)^2}, \lteSetLPrecision \rangle$ is as the quotient under the above equivalence relation. \end{remark} \begin{lemma} Given $\langle \antisymmequiv{\powersetO(\LL)^2}, \lteSetLPrecision \rangle$, and $x, y \in \powersetO(\LL)^2$ \begin{enumerate} \item $x \lteSetRPrecision y$. \item if $x \lteSetLPrecision y$ then $x \lteSetLRPrecision y$. \end{enumerate} \end{lemma} \begin{proof} (1) We have $\top_{\ltePrecision} \in y$. (2) Follows from (1). \end{proof} \begin{propositionOf}{chaincompletepreserve} Let $\langle \LL, \lte \rangle$ be a \CompleteLattice and $o: \LL^2 \rightarrow \powersetO(\LL)$ \AnNdao. The structure $\langle \antisymmequiv{o\image{R}}, \lteSetL \rangle$ is a \ChainCompletePoset where $R$ is one of the following: \begin{enumerate} \item\label{chaincompletepreserve:enum:a} $\LL^2$, \item\label{chaincompletepreserve:enum:b} $\LLc$ \item\label{chaincompletepreserve:enum:c} $\postfixpointsOf(o)$ \item\label{chaincompletepreserve:enum:d} $\prefixpointsOf(S(o))$ \end{enumerate} \end{propositionOf} \begin{proof} This should be simpler, the incoming is chain complete poset so should inject one ? \end{proof}