fixpoint-theory-nov24/betastable/report.tex

119 lines
3.2 KiB
TeX
Raw Normal View History

2024-11-22 18:13:14 -07:00
\documentclass{article}
2024-11-27 17:41:29 -07:00
\usepackage{natbib}
2024-11-22 18:13:14 -07:00
\usepackage{xspace}
2024-11-27 17:41:29 -07:00
\usepackage{xparse}
\usepackage{environ}
2024-11-22 18:13:14 -07:00
\usepackage{hyperref}
\usepackage{bm}
\usepackage[english]{babel}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{mathtools}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=black,
filecolor=black,
urlcolor=black,
pdfpagemode=FullScreen,
}
\input{../notation.tex}
\input{../glossary.tex}
\pagenumbering{arabic}
\pagestyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary}
\newtheorem{lemma}{Lemma}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{example}{Example}
\title{Consistent n-Approximators ($\beta$)}
\author{}
\date{}
\begin{document}
\maketitle
2024-11-27 17:41:29 -07:00
\section{Preliminaries}
\input{sections/preliminaries.tex}
2024-11-22 18:13:14 -07:00
\begin{definition}
\AnNdaoO is {\em extra consistent} if for every $\lte$-\Prefixpoint $y$ of $o(x, \cdot)_2$, $x \lte y$.
\end{definition}
\begin{definition}
"beta" stable revision
\begin{align*}
S(o)(x, y)_2 \define \minLattice_{\lte}(\fixpointsOf(o(x, \cdot)) \setminus ((y \downclosure) \setminus (x \upclosure)))
\end{align*}
\end{definition}
\begin{theorem}
For an extra consistent \Ndao $o$, regular stable revision is equivalent to beta stable revision
\end{theorem}
\begin{example}
SHowing without ultra consistency
\begin{align*}
o(x, y) \define (\{ \bot \}, \{ \bot \})
\end{align*}
below properties don't hold
\end{example}
\begin{proposition}\label{prop:ultra-consistency}
Works fo rdouble sided ordering
Given \AnNdaoO $o: \LL^2 \rightarrow \powersetO(\L)^2$ that is \Monotone from $\lte_p^2$ to $<_p^2$,\ we have for any consistent pair $(x, y) \in \LL^2$,
\begin{align*}
o(x, y) \lte_p^2 (o(x, y)_2, o(x, y)_1)
\end{align*}
\end{proposition}
\begin{lemma}
This probably needs double sides :()
Given an \Ndao $o$, if $y$ is a \Prefixpoint of $o(x, \cdot)_2$, then for some $y' \in o(x, \cdot)_2$, we have
$x \lte y' \lte y$.
\end{lemma}
\begin{proof}
begin
\end{proof}
% iven an \gls{ndao} $o$, its {\em $\beta$-n-stable fixpoints} are fixpoints of the following
% \begin{align*}
% B^o_{high}(x) &\define \{ a ~|~ a \in o({x}, a), \neg \exists a',
% \\ &\hspace{1.5cm}(\boxed{x \preceq_{}}~ a' \prec_{} a) \land (a' \in o({x}, a))) \}\\
% S(o)(x, y) &\define (C^{o}_{low}(y), B^{o}_{high}(x))
% \end{align*}}
% \newcommand{\betastablefixpoint}{\hyperlink{glossary:betastablefixpoint}{$\beta$-stable fixpoint}}
% \newglossaryentry{betastablefixpoint}{
% name={$\beta$-stable fixpoint},
% description={
% An \gls{interpretation} $(T, P)$ is a {\em $\alpha$-stable fixpoint} (or a $\beta$-stable fixpoint) if it is a \gls{fixpoint} of some $h \in H$ and for each $h' \in H$, none of the following hold
% \begin{enumerate}[(i.)]
% \item $\stablerevisionoperator(h')(T, P)_1 \prec_{} T$,
% \item ($\alpha$-stable only)~$\stablerevisionoperator(h')(T, P)_2 \prec_{} P$, nor
% \item ($\beta$-stable only) $\exists Z \in \L, T \preceq_{} (h'(T, Z)_2 = Z) \prec_{} P$
% \end{enumerate}
% }}
\bibliographystyle{plain}
\bibliography{../references}
\end{document}