2024-11-22 18:13:14 -07:00
\documentclass { article}
2024-11-27 17:41:29 -07:00
\usepackage { natbib}
2024-11-22 18:13:14 -07:00
\usepackage { xspace}
2024-11-27 17:41:29 -07:00
\usepackage { xparse}
\usepackage { environ}
2024-11-22 18:13:14 -07:00
\usepackage { hyperref}
\usepackage { bm}
\usepackage [english] { babel}
\usepackage { amsthm}
\usepackage { amsmath}
\usepackage { mathtools}
\usepackage { hyperref}
\hypersetup {
colorlinks=true,
linkcolor=black,
filecolor=black,
urlcolor=black,
pdfpagemode=FullScreen,
}
\input { ../notation.tex}
\input { ../glossary.tex}
\pagenumbering { arabic}
\pagestyle { plain}
\newtheorem { theorem} { Theorem}
\newtheorem { corollary} { Corollary}
\newtheorem { lemma} { Lemma}
\newtheorem { proposition} { Proposition}
\newtheorem { definition} { Definition}
\newtheorem { example} { Example}
\title { Consistent n-Approximators ($ \beta $ )}
\author { }
\date { }
\begin { document}
\maketitle
2024-11-27 17:41:29 -07:00
\section { Preliminaries}
\input { sections/preliminaries.tex}
2024-11-22 18:13:14 -07:00
\begin { definition}
\AnNdaoO is { \em extra consistent} if for every $ \lte $ -\Prefixpoint $ y $ of $ o ( x, \cdot ) _ 2 $ , $ x \lte y $ .
\end { definition}
\begin { definition}
"beta" stable revision
\begin { align*}
S(o)(x, y)_ 2 \define \minLattice _ { \lte } (\fixpointsOf (o(x, \cdot )) \setminus ((y \downclosure ) \setminus (x \upclosure )))
\end { align*}
\end { definition}
\begin { theorem}
For an extra consistent \Ndao $ o $ , regular stable revision is equivalent to beta stable revision
\end { theorem}
\begin { example}
SHowing without ultra consistency
\begin { align*}
o(x, y) \define (\{ \bot \} , \{ \bot \} )
\end { align*}
below properties don't hold
\end { example}
\begin { proposition} \label { prop:ultra-consistency}
Works fo rdouble sided ordering
Given \AnNdaoO $ o: \LL ^ 2 \rightarrow \powersetO ( \L ) ^ 2 $ that is \Monotone from $ \lte _ p ^ 2 $ to $ < _ p ^ 2 $ ,\ we have for any consistent pair $ ( x, y ) \in \LL ^ 2 $ ,
\begin { align*}
o(x, y) \lte _ p^ 2 (o(x, y)_ 2, o(x, y)_ 1)
\end { align*}
\end { proposition}
\begin { lemma}
This probably needs double sides :()
Given an \Ndao $ o $ , if $ y $ is a \Prefixpoint of $ o ( x, \cdot ) _ 2 $ , then for some $ y' \in o ( x, \cdot ) _ 2 $ , we have
$ x \lte y' \lte y $ .
\end { lemma}
\begin { proof}
begin
\end { proof}
% iven an \gls{ndao} $o$, its {\em $\beta$-n-stable fixpoints} are fixpoints of the following
% \begin{align*}
% B^o_{high}(x) &\define \{ a ~|~ a \in o({x}, a), \neg \exists a',
% \\ &\hspace{1.5cm}(\boxed{x \preceq_{}}~ a' \prec_{} a) \land (a' \in o({x}, a))) \}\\
% S(o)(x, y) &\define (C^{o}_{low}(y), B^{o}_{high}(x))
% \end{align*}}
% \newcommand{\betastablefixpoint}{\hyperlink{glossary:betastablefixpoint}{$\beta$-stable fixpoint}}
% \newglossaryentry{betastablefixpoint}{
% name={$\beta$-stable fixpoint},
% description={
% An \gls{interpretation} $(T, P)$ is a {\em $\alpha$-stable fixpoint} (or a $\beta$-stable fixpoint) if it is a \gls{fixpoint} of some $h \in H$ and for each $h' \in H$, none of the following hold
% \begin{enumerate}[(i.)]
% \item $\stablerevisionoperator(h')(T, P)_1 \prec_{} T$,
% \item ($\alpha$-stable only)~$\stablerevisionoperator(h')(T, P)_2 \prec_{} P$, nor
% \item ($\beta$-stable only) $\exists Z \in \L, T \preceq_{} (h'(T, Z)_2 = Z) \prec_{} P$
% \end{enumerate}
% }}
\bibliographystyle { plain}
\bibliography { ../references}
\end { document}