\documentclass{article} \usepackage{natbib} \usepackage{xspace} \usepackage{xparse} \usepackage{environ} \usepackage{hyperref} \usepackage{bm} \usepackage[english]{babel} \usepackage{amsthm} \usepackage{amsmath} \usepackage{mathtools} \usepackage{hyperref} \hypersetup{ colorlinks=true, linkcolor=black, filecolor=black, urlcolor=black, pdfpagemode=FullScreen, } \input{../notation.tex} \input{../glossary.tex} \pagenumbering{arabic} \pagestyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}{Corollary} \newtheorem{lemma}{Lemma} \newtheorem{proposition}{Proposition} \newtheorem{definition}{Definition} \newtheorem{example}{Example} \title{Consistent n-Approximators ($\beta$)} \author{} \date{} \begin{document} \maketitle \section{Preliminaries} \input{sections/preliminaries.tex} \begin{definition} \AnNdaoO is {\em extra consistent} if for every $\lte$-\Prefixpoint $y$ of $o(x, \cdot)_2$, $x \lte y$. \end{definition} \begin{definition} "beta" stable revision \begin{align*} S(o)(x, y)_2 \define \minLattice_{\lte}(\fixpointsOf(o(x, \cdot)) \setminus ((y \downclosure) \setminus (x \upclosure))) \end{align*} \end{definition} \begin{theorem} For an extra consistent \Ndao $o$, regular stable revision is equivalent to beta stable revision \end{theorem} \begin{example} SHowing without ultra consistency \begin{align*} o(x, y) \define (\{ \bot \}, \{ \bot \}) \end{align*} below properties don't hold \end{example} \begin{proposition}\label{prop:ultra-consistency} Works fo rdouble sided ordering Given \AnNdaoO $o: \LL^2 \rightarrow \powersetO(\L)^2$ that is \Monotone from $\lte_p^2$ to $<_p^2$,\ we have for any consistent pair $(x, y) \in \LL^2$, \begin{align*} o(x, y) \lte_p^2 (o(x, y)_2, o(x, y)_1) \end{align*} \end{proposition} \begin{lemma} This probably needs double sides :() Given an \Ndao $o$, if $y$ is a \Prefixpoint of $o(x, \cdot)_2$, then for some $y' \in o(x, \cdot)_2$, we have $x \lte y' \lte y$. \end{lemma} \begin{proof} begin \end{proof} % iven an \gls{ndao} $o$, its {\em $\beta$-n-stable fixpoints} are fixpoints of the following % \begin{align*} % B^o_{high}(x) &\define \{ a ~|~ a \in o({x}, a), \neg \exists a', % \\ &\hspace{1.5cm}(\boxed{x \preceq_{}}~ a' \prec_{} a) \land (a' \in o({x}, a))) \}\\ % S(o)(x, y) &\define (C^{o}_{low}(y), B^{o}_{high}(x)) % \end{align*}} % \newcommand{\betastablefixpoint}{\hyperlink{glossary:betastablefixpoint}{$\beta$-stable fixpoint}} % \newglossaryentry{betastablefixpoint}{ % name={$\beta$-stable fixpoint}, % description={ % An \gls{interpretation} $(T, P)$ is a {\em $\alpha$-stable fixpoint} (or a $\beta$-stable fixpoint) if it is a \gls{fixpoint} of some $h \in H$ and for each $h' \in H$, none of the following hold % \begin{enumerate}[(i.)] % \item $\stablerevisionoperator(h')(T, P)_1 \prec_{} T$, % \item ($\alpha$-stable only)~$\stablerevisionoperator(h')(T, P)_2 \prec_{} P$, nor % \item ($\beta$-stable only) $\exists Z \in \L, T \preceq_{} (h'(T, Z)_2 = Z) \prec_{} P$ % \end{enumerate} % }} \bibliographystyle{plain} \bibliography{../references} \end{document}