Summary of Important Definitions

May 11th

1 Lattice Theory

Definition 1.1. A partial order \leq is a relation over a set S such that for every triple of elements $x, y, z \in S$ the following hold

- $(reflexivity) \ x \leq x$
- $(antisymmetry) (x \leq y \land y \leq x) \Rightarrow x = y$
- $(transitivity) (x \leq y \land y \leq z) \Rightarrow (x \leq z)$

Definition 1.2. Given a partial order \leq over a set S and a subset $X \subseteq S$, a lower bound of X (resp. an upper bound of X) is an element $x \in S$ (Note that it may be the case that $x \notin X$) such that

- $\forall y \in X, x \preceq y$
- $(resp. \ \forall y \in X, \lceil y \rceil \leq x)$

The greatest lower bound of a set $X \subseteq S$ (denoted as $\mathbf{glb}(X)$) is a unique upperbound of the set of all lowerbounds of X. The least upper bound of a set $X \subseteq S$ (denoted as $\mathbf{lub}(X)$) is a unique lowerbound of the set of all upperbounds of X. In general, $\mathbf{lub}(X)$ and $\mathbf{glb}(X)$ may not exist.

Definition 1.3. A (complete) lattice $\langle \mathcal{L}, \preceq \rangle$ is a set of elements \mathcal{L} and a partial order \preceq over \mathcal{L} such that for any set $S \subseteq \mathcal{L}$

• lub(X) and glb(X) exist and are unique.

1.1 Fixpoint Operators

Definition 1.4. Given a complete lattice $\langle \mathcal{L}, \preceq \rangle$, a fixpoint operator over the lattice is a function $\Phi : \mathcal{L} \to \mathcal{L}$ that is \preceq -monotone

• Φ is \leq -monotone if for all $x, y \in \mathcal{L}$

$$x \leq y \Rightarrow \Phi(x) \leq \Phi(y)$$

(Note: this does not mean the function is inflationary, i.e., $x \leq \Phi(x)$ may not hold)

A fixpoint is an element $x \in \mathcal{L}$ s.t. $\Phi(x) = x$.

Theorem 1.1 (Knaster-Tarski). The set of all fixpoints of a fixpoint operator Φ on a complete lattice is itself a complete lattice. The least element of this new lattice exists and is called the least fixpoint (denoted as $\mathbf{lfp}\ \Phi$)

Some intuitions about lattices

- The entire lattice has a biggest element lub $(\mathcal{L}) = \top$ and a smallest element glb $(\mathcal{L}) = \bot$
- When a lattice has a finite height (or finite domain). The least fixed point of a fixpoint operator can be computed by iteratively applying the fixpoint operator to \bot
- An operator may return an element that is not comparable to the input, however, after a comparable element is returned (either greater or less than) that comparability and direction are maintained for all subsequent iterations.
- Further, because \bot is less than all elements in the lattice, it is always the case that $\bot \preceq \Phi(\bot)$

2 Partial Stable Model Semantics

Definition 2.1. A (ground and normal) answer set program \mathcal{P} is a set of rules where each rule r is of the form

$$h \leftarrow a_0, \ a_1, \ \ldots, \ a_n, \ \mathbf{not} \ b_0, \ \mathbf{not} \ b_1, \ \ldots, \ \mathbf{not} \ b_k$$

where we define the following shorthand for a rule $r \in \mathcal{P}$

$$head(r) = h$$

 $body^+(r) = \{a_0, a_1, \dots, a_n\}$
 $body^-(r) = \{b_0, b_1, \dots, b_k\}$

Definition 2.2. A two-valued interpretation I of a program \mathcal{P} is a set of atoms that appear in \mathcal{P} .

Definition 2.3. An interpretation I is a $\lfloor model \rfloor$ of a program \mathcal{P} if for each rule $r \in \mathcal{P}$

• If $body^+(r) \subseteq I$ and $body^-(r) \cap I = \emptyset$ then $head(r) \in I$.

Definition 2.4. An interpretation I is a stable model of a program \mathcal{P} if I is a model of \mathcal{P} and for every interpretation $I' \subseteq I$ there exists a rule $r \in \mathcal{P}$ such that

• $body^+(r) \subseteq I'$, $body^-(r) \cap I \neq \emptyset$ (Note that this is I and not I') and $head(r) \not\in I'$

Definition 2.5. A three-valued interpretation (T, P) of a program \mathcal{P} is a pair of sets of atoms such that $T \subseteq P$. The truth-ordering respects $\mathbf{f} < \mathbf{u} < \mathbf{t}$ and is defined for two three-valued interpretations (T, P) and (X, Y) as follows.

$$(T,P) \leq_t (X,Y) \text{ iff } T \subseteq X \land P \subseteq Y$$

The precision-ordering respects the partial order $\mathbf{u} < \mathbf{t}$, $\mathbf{u} < \mathbf{f}$ and is defined for two three-valued interpretations (T, P) and (X, Y) as follows.

$$(T,P) \preceq_p (X,Y) \text{ iff } T \subseteq X \land \overline{Y \subseteq P}$$

Definition 2.6. A three-valued interpretation (T, P) is a model of a program P if for each rule $r \in P$

- $body(r) \subseteq P \land body^{-}(r) \cap T = \emptyset$ implies $head(r) \in P$, and
- $body(r) \subseteq T \land body^-(r) \cap P = \emptyset$ implies $head(r) \in T$.

Definition 2.7. A three-valued interpretation (T, P) is a stable model of a program \mathcal{P} if it is a model of \mathcal{P} and if for every three-valued interpretation (X,Y) such that $(X,Y) \leq_t (T,P)$ there exists a rule $r \in \mathcal{P}$ such that either

- $body^+(r) \subseteq Y \wedge body^-(r) \cap T = \emptyset$ and $head(r) \notin Y$ **OR**
- $body^+(r) \subseteq X \wedge body^-(r) \cap P = \emptyset$ and $head(r) \notin X$

3 Approximation Fixpoint Theory

We can think of a three-valued interpretation (T, P) as an approximation on the set of true atoms. T is a lower bound and P is the upper bound.

Definition 3.1. An approximator is a fixpoint operator on the complete lattice $\langle \wp(\mathcal{L})^2, \preceq_p \rangle$ (called a bilattice)

Given a function $f(T, P): S^2 \to S^2$, we define two separate functions

$$f(\cdot, P)_1: S \to S$$

 $f(T, \cdot)_2: S \to S$

such that

$$f(T,P) = \Big((f(\cdot,P)_1)(T),$$
$$(f(T,\cdot)_2)(P) \Big)$$

Definition 3.2. Given an approximator $\Phi(T, P)$ the stable revision operator is defined as follows

$$S(T,P) = (\mathbf{lfp}(\Phi(\cdot,P)_1), \ \mathbf{lfp}(\Phi(T,\cdot)_2))$$

Note: the **lfp** is applied to a unary operator, thus it's the least fixpoint of the lattice $\langle \wp(\mathcal{L}), \subseteq \rangle$ whose least element is \emptyset .

3.1 An Approximator for Partial Stable Semantics

$$\Gamma(T,P) \coloneqq \{ head(r) \mid r \in \mathcal{P}, T \subseteq body^+(r), body^-(r) \cap P = \emptyset \}$$

$$\Gamma(P,T) \coloneqq \{ head(r) \mid r \in \mathcal{P}, P \subseteq body^+(r), body^-(r) \cap T = \emptyset \}$$

$$\Phi(T,P) \coloneqq \Big(\Gamma(T,P), \Gamma(P,T) \Big)$$

Without stable revision where $(T, P) = (\{a, b\}, \{a, b\})$

$$\Phi(T, P) = (\{a, b\}, \{a, b\}) \text{ (fixpoint reached)}$$

With stable revision

$$S(T,P) = (\emptyset,\emptyset)$$
 (fixpoint reached)

Proposition 3.1. Given a poset $\langle \mathcal{L}, \leq \rangle$, an operator $o : \mathcal{L} \to \mathcal{L}$ is \leq -monotone iff it is \geq -monotone

Proof. (\Rightarrow) Initially, we have $\forall x, y \in \mathcal{L} : x \leq y \Rightarrow o(x) \leq o(y)$. Let $a, b \in \mathcal{L}$ such that $a \geq b$. We have $b \leq a$ and can apply our initial assumption to get $o(b) \leq o(a)$. This gives us $o(a) \geq o(b)$. We can generalize to obtain $\forall x, y \in \mathcal{L} : x \geq y \Rightarrow o(x) \geq o(y)$. (\Leftarrow) Proof is more or less the same

Proposition 3.2. An operator $A: L^2 \to L^2$ is symmetric and monotone with respect to both \leq_i and \leq if and only if there is a monotone operator $O: L \to L$ such that for every $x, y \in L, A(x, y) = (O(x), O(y))$

Proof. (\Rightarrow) From Proposition 5 and 6 we have for any $x \in L$, $A_1(\cdot, x)$ and $A_1(x, \cdot)$ are monotone and $A_1(x, \cdot)$ is antimonotone. By Proposition 2, $A_1(x, \cdot)$ is constant, denote this constant as the function O(x). By the symmetric condition, we have $A_1(x, \cdot) = A_2(\cdot, x)$, thus A(x, y) = (O(x), O(y)). It follows from the monotonicity of A that O is monotone.

 (\Leftarrow) Clearly A is symmetric, and \leq -monotone (Given that O is \leq -monotone). Using proposition 3.1 (above) O(x) is \geq -monotone, thus A is \leq_i -monotone as well.

4 The Polynomial Heirarchy

Intuitive definitions of NP

- the class of problems which have algorithms that can verify solutions in polynomial time.
- A problem that can be solved by reducing it to a SAT expression of the form

$$\exists (a \lor b \lor c) \land (\neg a \lor \neg d \lor c) \land \cdots$$

• (Alternating turing machine) A problem that is solved by some path of an algorithm that is allowed to branch is parallel

Intuitive definitions of NP^NP a.k.a. Σ_2^P

- \bullet the class of problems which have algorithms that can verify solutions in NP time.
- A problem that can be solved by reducing it to a SAT expression of the form

$$\exists c, \ \forall a, \ b, \ (a \lor b \lor c) \land (\neg a \lor \neg d \lor c) \land \cdots$$

• (Alternating Turing machine) A problem that is solved by some path of an algorithm that is allowed to branch in parallel. A branch is allowed to switch to "ALL" mode only once and require that all subsequent forks return success