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1 Lattice Theory

Definition 1.1. A partial order =< is a relation over a set S such that for every
triple of elements x,y,z € S the following hold

o (reflexivity) x <X x
o (antisymmetry) (xt KyAy3z) =z =y
o (transitivity) (x S yAy < 2) = (z < 2)

Definition 1.2. Given a partial order =< over a set S and a subset X C S, a
lower bound of X (resp. an upper bound of X ) is an element x € S (Note that
it may be the case that x & X ) such that

o Vyec X,[z] 2y

o (resp. Vy € X,[y| 2 z)

The greatest lower bound of a set X C S (denoted as glb(X)) is a unique
upperbound of the set of all lowerbounds of X. The least upper bound of a set
X C S (denoted as lub(X)) is a unique lowerbound of the set of all upperbounds
of X. In general, lub(X) and glb(X) may not exist.

Definition 1.3. A (complete) lattice (L, =) is a set of elements L and a partial
order < over L such that for any set S C L

o lub(X) and glb(X) exist and are unique.

1.1 Fixpoint Operators

Definition 1.4. Given a complete lattice (L, =), a fizpoint operator over the
lattice is a function ® : L — L that is <-monotone

o & is <X-monotone if for all x,y € L
z 2y = o(x) 2 0(y)

(Note: this does not mean the function is inflationary, i.e., x < ®(x) may
not hold)



A fixpoint is an element x € L s.t. ®(z) = x.

Theorem 1.1 (Knaster-Tarski). The set of all fixpoints of a fixpoint operator
® on a complete lattice is itself a complete lattice. The least element of this new
lattice exists and is called the least fizpoint (denoted as l1fp @)

Some intuitions about lattices

e The entire lattice has a biggest element lub (£) = T and a smallest
element glb (£) = L

e When a lattice has a finite height (or finite domain). The least fixed point
of a fixpoint operator can be computed by iteratively applying the fixpoint
operator to L

e An operator may return an element that is not comparable to the input,
however, after a comparable element is returned (either greater or less
than) that comparability and direction are maintained for all subsequent
iterations.

e Further, because 1 is less than all elements in the lattice, it is always the
case that L < ®(L)

2 Partial Stable Model Semantics

Definition 2.1. A (ground and normal) answer set program P is a set of rules
where each rule r is of the form

h < agp, a1, ..., ap, notby, not by, ..., not by

where we define the following shorthand for a rule r € P

head(r) = h
body™ (r) = {ag, a1, ..., an}
body™ (r) = {bo, b1, ..., br}

Definition 2.2. A two-valued interpretation I of a program P is a set of atoms
that appear in P.

Definition 2.3. An interpretation I is a of a program P if for each rule
repP

e Ifbody™(r) C I and body~ (r)NI =10 then head(r) € I.
Definition 2.4. An interpretation I is a |stable model| of a program P if I is

a model of P and for every interpretation I' C I there exists a Tule r € P such
that

e body™(r) C I', body(r) NI # O (Note that this is I and not I') and
head(r) ¢ I’



Definition 2.5. A three-valued interpretation (T, P) of a program P is a pair
of sets of atoms such that T C P. The |truth-ordering| respects f < u < t and
is defined for two three-valued interpretations (T, P) and (X,Y) as follows.

(T,P) % (X,Y) if TCXAPCY

The ’precision-ordering‘ respects the partial order u < t, u < f and is defined
for two three-valued interpretations (T, P) and (X,Y) as follows.

(T,P) =, (X,Y) iff T € X A[Y C P]

Definition 2.6. A three-valued interpretation (T, P) is a model of a program
P if for each rule r € P

e body(r) C P Abody™(r)NT = 0 implies head(r) € P, and
e body(r) C T ANbody~(r) N P =0 implies head(r) € T.

Definition 2.7. A three-valued interpretation (T, P) is a stable model of a
program P if it is a model of P and if for every three-valued interpretation
(X,Y) such that (X,Y) =< (T, P) there exists a rule r € P such that either

e body™(r) CY Abody=(r)NT =0 and head(r) ¢ Y OR
e body™(r) C X Abody™ (r) NP =10 and head(r) ¢ X

3 Approximation Fixpoint Theory

We can think of a three-valued interpretation (7, P) as an approximation on
the set of true atoms. T is a lower bound and P is the upper bound.

Definition 3.1. An approximator is a fixpoint operator on the complete lattice
(p(L£)?,=p) (called a bilattice)

Given a function f(T, P) : S? — S?, we define two separate functions

f(',P)li S =5
f(T,')gZ S =S

such that
1@, P) = ((£C, P,

Definition 3.2. Given an approzimator ®(T, P) the stable revision operator is
defined as follows

S(T, P) = (p(®(-, P)1), Up(S(T,-)2))

Note: the Ifp is applied to a unary operator, thus it’s the least fixpoint of the
lattice {p(L), C) whose least element is .



3.1 An Approximator for Partial Stable Semantics

(T, P) == {head(r) | r € P, T C body™ (r),body~(r) N P = 0}
(P, T) := {head(r) | r € P, P C body™ (r),body™ (r)NT = 0}
&(T, P) = (F(T7 P),T(P, T))

Without stable revision where (T, P) = ({a,b}, {a,b})
®(T, P) = ({a, b}, {a,b}) (fixpoint reached)
With stable revision
S(T,P) = (0,0) (fixpoint reached)

Proposition 3.1. Given a poset (L, <), an operator o : L — L is <-monotone
iff it is >-monotone

Proof. (=) Initially, we have Vz,y € L : 2 <y = o(z) < o(y). Let a,b € L
such that a > b. We have b < a and can apply our initial assumption to get
o(b) < o(a). This gives us o(a) > o(b). We can generalize to obtain Vz,y € L :
x>y = o(zr) > o(y). (<) Proof is more or less the same O

Proposition 3.2. An operator A : L? — L? is symmetric and monotone with
respect to both <; and < if and only if there is a monotone operator O : L — L
such that for every xz,y € L, A(z,y) = (O(x),0(y))

Proof. (=) From Proposition 5 and 6 we have for any « € L, A;(-,z) and
Aq(z,-) are monotone and A;(z,-) is antimonotone. By Proposition 2, Ay(z,-)
is constant, denote this constant as the function O(x). By the symmetric con-
dition, we have A (z,-) = As(-, z), thus A(z,y) = (O(x),O(y)). It follows from
the monotonicity of A that O is monotone.

(«<=) Clearly A is symmetric, and <-monotone (Given that O is <-monotone).
Using proposition 3.1 (above) O(x) is >-monotone, thus A is <;-monotone as
well. O

4 The Polynomial Heirarchy

Intuitive definitions of NP

e the class of problems which have algorithms that can verify solutions in
polynomial time.

e A problem that can be solved by reducing it to a SAT expression of the
form

aVbVe)A(-aV-dVe) A---



e (Alternating turing machine) A problem that is solved by some path of
an algorithm that is allowed to branch is parallel

Intuitive definitions of NPNP a k.a. 25

e the class of problems which have algorithms that can verify solutions in
NP time.

e A problem that can be solved by reducing it to a SAT expression of the
form

Je, Ya, b, (aVbVe)A(-aV-dVe) A---

e (Alternating Turing machine) A problem that is solved by some path of
an algorithm that is allowed to branch in parallel. A branch is allowed
to switch to “ALL” mode only once and require that all subsequent forks
return success



