This commit is contained in:
parent
db572b87d5
commit
6a1ab2db8f
BIN
document.pdf
BIN
document.pdf
Binary file not shown.
56
document.tex
56
document.tex
|
@ -174,6 +174,62 @@
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{proposition}\label{}
|
||||||
|
Given a poset $\langle \mathcal{L}, \leq \rangle$,
|
||||||
|
an operator $o: \mathcal{L} \rightarrow \mathcal{L}$ is $\leq$-monotone iff it is $\geq$-monotone
|
||||||
|
\end{proposition}
|
||||||
|
\begin{proof}
|
||||||
|
($\Rightarrow$)
|
||||||
|
Initially, we have $\forall x, y \in \mathcal{L}: x \leq y \implies o(x) \leq o(y)$.
|
||||||
|
Let $a, b \in \mathcal{L}$ such that $a \geq b$. We have $b \leq a$ and can apply our initial assumption to get $o(b) \leq o(a)$.
|
||||||
|
This gives us $o(a) \geq o(b)$.
|
||||||
|
We can generalize to obtain $\forall x, y \in \mathcal{L}: x \geq y \implies o(x) \geq o(y)$.
|
||||||
|
($\Leftarrow$) Proof is more or less the same
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
% Let $\leq$ and $\leq_i$ be the orderings over the set $\mathcal{L}^2$ such that for each ${(T, P), (X, Y) \in \mathcal{L}^2}$
|
||||||
|
% \begin{align*}
|
||||||
|
% (a, b) \leq (x, y) &\textit{ iff } a \leq x \textrm{ and } b \leq y\\
|
||||||
|
% (a, b) \leq_i (x, y) &\textit{ iff } a \leq x \textrm{ and } \boxed{y} \leq b
|
||||||
|
% \end{align*}
|
||||||
|
% \begin{proposition}
|
||||||
|
% Given a poset $\langle \mathcal{L}^2, \leq \rangle$, an operator $o: \wp(\mathcal{L})^2 \rightarrow \wp(\mathcal{L})^2$ is $\leq$-monotone iff it is $\leq_i$-monotone
|
||||||
|
% \end{proposition}
|
||||||
|
% \begin{proof}
|
||||||
|
% ($\Rightarrow$) Initially, we have ${\forall (x, y), (a, b) \in \mathcal{L}^2: (x, y) \leq (a, b) \implies o(x, y) \leq o(a, b)}$.
|
||||||
|
% If we rearrange the variables we get
|
||||||
|
% \begin{align*}
|
||||||
|
% &\forall x, a \in \mathcal{L}: \forall y, b \in \mathcal{L}:\\
|
||||||
|
% &~~~~~(x \leq a \land y \leq b) \implies ((o_1(x, y) \leq o_1(a, b)) \land (o_2(x, y) \leq o_2(a, b)))
|
||||||
|
% \end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
% Let $(u, v), (i, k) \in \mathcal{L}^2$ such that $(u, v) \leq_i (i, k)$. We have $(u, k) \leq (i, v)$. We can apply the initial assumption to obtain
|
||||||
|
% $o(u, k) \leq o(i, v)$. This is equivalent to
|
||||||
|
% \begin{align*}
|
||||||
|
% (o_1(u, k) \leq o_1(i, v)) \land (o_2(u, k) \leq o_2(i, v))
|
||||||
|
% \end{align*}
|
||||||
|
% which can be rewritten as
|
||||||
|
% \begin{align*}
|
||||||
|
% (o_1(u, k) \leq o_1(i, v)) \land \boxed{(o_2(i, v)) \leq o_2(u, k))}
|
||||||
|
% \end{align*}
|
||||||
|
% \end{proof}
|
||||||
|
|
||||||
|
\begin{proposition}
|
||||||
|
An operator $A : L^2 \rightarrow L^2$ is symmetric and monotone
|
||||||
|
with respect to both $\leq_i$ and $\leq$ if and only if there is a monotone operator
|
||||||
|
$O : L \rightarrow L$ such that for every $x, y \in L, A(x, y) = (O (x), O (y ))$
|
||||||
|
\end{proposition}
|
||||||
|
\begin{proof}
|
||||||
|
($\Rightarrow$)
|
||||||
|
From Proposition 5 and 6 we have for any $x \in L$, $A_1(\cdot, x)$ and $A_1(x, \cdot)$ are monotone and $A_1(x, \cdot)$ is antimonotone.
|
||||||
|
By Proposition 2, $A_1(x, \cdot)$ is constant, denote this constant as the function $O(x)$.
|
||||||
|
By the symmetric condition, we have $A_1(x, \cdot) = A_2(\cdot, x)$, thus $A(x, y) = (O(x), O(y))$. It follows from the monotonicity of $A$ that $O$ is monotone.
|
||||||
|
|
||||||
|
($\Leftarrow$)
|
||||||
|
Clearly $A$ is symmetric, and $\leq$-monotone (Given that $O$ is $\leq$-monotone). Using proposition 3.1 (above) $O(x)$ is $\geq$-monotone, thus $A$ is $\leq_i$-monotone as well.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\section{The Polynomial Heirarchy}
|
\section{The Polynomial Heirarchy}
|
||||||
Intuitive definitions of ${\sf NP}$
|
Intuitive definitions of ${\sf NP}$
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
|
|
Loading…
Reference in New Issue