.
This commit is contained in:
		
							parent
							
								
									db572b87d5
								
							
						
					
					
						commit
						6a1ab2db8f
					
				
					 2 changed files with 56 additions and 0 deletions
				
			
		
							
								
								
									
										
											BIN
										
									
								
								document.pdf
									
										
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								document.pdf
									
										
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										56
									
								
								document.tex
									
										
									
									
									
								
							
							
						
						
									
										56
									
								
								document.tex
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -173,6 +173,62 @@
 | 
			
		|||
        S(T, P) = (\emptyset, \emptyset) \textrm{   (fixpoint reached)}
 | 
			
		||||
    \end{align*}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    \begin{proposition}\label{}
 | 
			
		||||
        Given a poset $\langle \mathcal{L}, \leq \rangle$,
 | 
			
		||||
        an operator $o: \mathcal{L} \rightarrow \mathcal{L}$ is $\leq$-monotone iff it is $\geq$-monotone 
 | 
			
		||||
    \end{proposition}
 | 
			
		||||
    \begin{proof}
 | 
			
		||||
        ($\Rightarrow$) 
 | 
			
		||||
        Initially, we have $\forall x, y \in \mathcal{L}: x \leq y \implies o(x) \leq o(y)$.
 | 
			
		||||
        Let $a, b \in \mathcal{L}$ such that $a \geq b$. We have $b \leq a$ and can apply our initial assumption to get $o(b) \leq o(a)$.
 | 
			
		||||
        This gives us $o(a) \geq o(b)$.
 | 
			
		||||
        We can generalize to obtain $\forall x, y \in \mathcal{L}: x \geq y \implies o(x) \geq o(y)$.
 | 
			
		||||
        ($\Leftarrow$) Proof is more or less the same
 | 
			
		||||
    \end{proof}
 | 
			
		||||
 | 
			
		||||
    % Let $\leq$ and $\leq_i$ be the orderings over the set $\mathcal{L}^2$ such that for each ${(T, P), (X, Y) \in \mathcal{L}^2}$
 | 
			
		||||
    % \begin{align*}
 | 
			
		||||
    %     (a, b) \leq (x, y) &\textit{ iff } a \leq x \textrm{ and } b \leq y\\
 | 
			
		||||
    %     (a, b) \leq_i (x, y) &\textit{ iff } a \leq x \textrm{ and } \boxed{y} \leq b
 | 
			
		||||
    % \end{align*}
 | 
			
		||||
    % \begin{proposition}
 | 
			
		||||
    %     Given a poset $\langle \mathcal{L}^2, \leq \rangle$, an operator $o: \wp(\mathcal{L})^2 \rightarrow \wp(\mathcal{L})^2$ is $\leq$-monotone iff it is $\leq_i$-monotone 
 | 
			
		||||
    % \end{proposition}
 | 
			
		||||
    % \begin{proof}
 | 
			
		||||
    %     ($\Rightarrow$) Initially, we have ${\forall (x, y), (a, b) \in \mathcal{L}^2: (x, y) \leq (a, b) \implies o(x, y) \leq o(a, b)}$.
 | 
			
		||||
    %     If we rearrange the variables we get
 | 
			
		||||
    %     \begin{align*}
 | 
			
		||||
    %         &\forall x, a \in \mathcal{L}: \forall y, b \in \mathcal{L}:\\
 | 
			
		||||
    %         &~~~~~(x \leq a \land y \leq b) \implies ((o_1(x, y) \leq o_1(a, b)) \land (o_2(x, y) \leq o_2(a, b)))
 | 
			
		||||
    %     \end{align*}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    %     Let $(u, v), (i, k) \in \mathcal{L}^2$ such that $(u, v) \leq_i (i, k)$. We have $(u, k) \leq (i, v)$. We can apply the initial assumption to obtain
 | 
			
		||||
    %     $o(u, k) \leq o(i, v)$. This is equivalent to 
 | 
			
		||||
    %     \begin{align*}
 | 
			
		||||
    %         (o_1(u, k) \leq o_1(i, v)) \land (o_2(u, k) \leq o_2(i, v))
 | 
			
		||||
    %     \end{align*}
 | 
			
		||||
    %     which can be rewritten as 
 | 
			
		||||
    %     \begin{align*}
 | 
			
		||||
    %         (o_1(u, k) \leq o_1(i, v)) \land \boxed{(o_2(i, v)) \leq o_2(u, k))}
 | 
			
		||||
    %     \end{align*}
 | 
			
		||||
    % \end{proof}
 | 
			
		||||
 | 
			
		||||
    \begin{proposition}
 | 
			
		||||
        An operator $A : L^2 \rightarrow L^2$ is symmetric and monotone
 | 
			
		||||
        with respect to both $\leq_i$ and $\leq$ if and only if there is a monotone operator
 | 
			
		||||
        $O : L \rightarrow L$ such that for every $x, y \in L, A(x, y) = (O (x), O (y ))$
 | 
			
		||||
    \end{proposition}
 | 
			
		||||
    \begin{proof}
 | 
			
		||||
        ($\Rightarrow$)
 | 
			
		||||
        From Proposition 5 and 6 we have for any $x \in L$, $A_1(\cdot, x)$ and $A_1(x, \cdot)$ are monotone and $A_1(x, \cdot)$ is antimonotone.
 | 
			
		||||
        By Proposition 2, $A_1(x, \cdot)$ is constant, denote this constant as the function $O(x)$.
 | 
			
		||||
        By the symmetric condition, we have $A_1(x, \cdot) = A_2(\cdot, x)$, thus $A(x, y) = (O(x), O(y))$. It follows from the monotonicity of $A$ that $O$ is monotone.
 | 
			
		||||
 | 
			
		||||
        ($\Leftarrow$)
 | 
			
		||||
        Clearly $A$ is symmetric, and $\leq$-monotone (Given that $O$ is $\leq$-monotone). Using proposition 3.1 (above) $O(x)$ is $\geq$-monotone, thus $A$ is $\leq_i$-monotone as well.
 | 
			
		||||
    \end{proof}
 | 
			
		||||
    
 | 
			
		||||
    \section{The Polynomial Heirarchy}
 | 
			
		||||
    Intuitive definitions of ${\sf NP}$
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		
		Reference in a new issue