add a approximator for partial stable semantics
This commit is contained in:
parent
013460694b
commit
02031babec
BIN
document.pdf
BIN
document.pdf
Binary file not shown.
10
document.tex
10
document.tex
|
@ -156,6 +156,15 @@
|
||||||
Note: the $\lfp$ is applied to a unary operator, thus it's the least fixpoint of the lattice $\langle \wp(\mathcal{L}), \subseteq \rangle$ whose least element is $\emptyset$.
|
Note: the $\lfp$ is applied to a unary operator, thus it's the least fixpoint of the lattice $\langle \wp(\mathcal{L}), \subseteq \rangle$ whose least element is $\emptyset$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
\subsection{An Approximator for Partial Stable Semantics}
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\Gamma(T, P) &\define \{ \head(r) ~|~ r \in \P, T \subseteq \bodyp(r), \bodyn(r) \intersect P = \emptyset \}\\
|
||||||
|
\Gamma(P, T) &\define \{ \head(r) ~|~ r \in \P, P \subseteq \bodyp(r), \bodyn(r) \intersect T = \emptyset \}\\
|
||||||
|
\Phi(T, P) &\define \Bigl( \Gamma(T, P), \Gamma(P, T) \Bigr)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
\section{The Polynomial Heirarchy}
|
\section{The Polynomial Heirarchy}
|
||||||
Intuitive definitions of ${\sf NP}$
|
Intuitive definitions of ${\sf NP}$
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
|
@ -176,4 +185,5 @@
|
||||||
\item (Alternating Turing machine) A problem that is solved by some path of an algorithm that is allowed to branch in parallel. A branch is allowed to switch to ``ALL'' mode only once and require that all subsequent forks return success
|
\item (Alternating Turing machine) A problem that is solved by some path of an algorithm that is allowed to branch in parallel. A branch is allowed to switch to ``ALL'' mode only once and require that all subsequent forks return success
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
Loading…
Reference in New Issue