\documentclass{article} \usepackage{xspace} \usepackage{hyperref} \usepackage{bm} \usepackage[english]{babel} \usepackage{amsthm} \usepackage{amsmath} \usepackage{mathtools} \newcommand{\jh}[1]{{\leavevmode\color{blue!50!red}#1}} \input{notation.tex} \input{glossary.tex} \pagenumbering{arabic} \pagestyle{plain} \newtheorem{theorem}{Theorem} \begin{document} % \maketitle \definition{monotone}{define monotone} \definition{image}{define set image} \definition{completelattice}{define complete lattice} Hello world\cite{tarskilatticetheoretical1955} First, we generalize Knaster-Tarski Fixpoint Theorem. $$\fixpointsOf(S)$$ \begin{theorem}[Tarski-Knaster Fixpoint Theorem~\cite{tarskilatticetheoretical1955}] For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle \fixpointsOf(o), \lte \rangle$ is a \CompleteLattice. \end{theorem} \begin{theorem} For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle o\imageNoLink{\L}, \lte \rangle$ is a \CompleteLattice. \end{theorem} \begin{proof} Consider $\langle \L', \lte' \rangle$ where \begin{align*} \L' \define \{ x' ~|~ x \in \L \} \\ x' \lte' y' \iff x \lte y \textrm{ where } x, y \in \L \end{align*} Clearly, $\langle \L', \lte' \rangle$ is a \CompleteLattice. Combining $\L$ and $\L'$ \begin{align*} \L^* \define \{ \top^*, \bot^* \} \union \L \union \L' \\ \forall x^*, y^* \in \L^*, x^* \lte y^* \iff \begin{cases} (x^* = \bot^*) \lor (y^* = \top^*) \\ two \\ three \end{cases} \end{align*} \end{proof} \bibliographystyle{plain} \bibliography{references} \end{document}