\begin{definition} \AnNdaoO is {\em extra consistent} if for every $\lte$-\Prefixpoint $y$ of $o(x, \cdot)_2$, $x \lte y$. \end{definition} \begin{definition} "beta" stable revision \begin{align*} S(o)(x, y)_2 \define \minLattice_{\lte}(\fixpointsOf(o(x, \cdot)) \setminus ((y \downclosure) \setminus (x \upclosure))) \end{align*} \end{definition} \begin{theorem} For an extra consistent \Ndao $o$, regular stable revision is equivalent to beta stable revision \end{theorem} \begin{example} SHowing without ultra consistency \begin{align*} o(x, y) \define (\{ \bot \}, \{ \bot \}) \end{align*} below properties don't hold \end{example} \begin{proposition}\label{prop:ultra-consistency} Works fo rdouble sided ordering Given \AnNdaoO $o: \LL^2 \rightarrow \powersetO(\L)^2$ that is \Monotone from $\lte_p^2$ to $<_p^2$,\ we have for any consistent pair $(x, y) \in \LL^2$, \begin{align*} o(x, y) \lte_p^2 (o(x, y)_2, o(x, y)_1) \end{align*} \end{proposition} \begin{lemma} This probably needs double sides :() Given an \Ndao $o$, if $y$ is a \Prefixpoint of $o(x, \cdot)_2$, then for some $y' \in o(x, \cdot)_2$, we have $x \lte y' \lte y$. \end{lemma} \begin{proof} begin \end{proof}