\section{Lattice Theory} \definitionBody{powerset}{Given a set $S$, we denote its powerset, i.e.\ $\{ x \subseteq S \}$ with $\powerset(S)$. We use $\powersetO(S)$ to denote the powerset of $S$ without the empty set.} \definitionBody{poset}{ We call $\langle S, \lte \rangle$ a {\em poset} (a partially ordered set) if $\lte$ is reflexive, transitive and antisymmetric. } \definitionBody{lubglb}{An element is an {\em upper or lower bound} of a subset $S$ of a \Poset if it is greater than or equal or less than or equal, respectively, to every element inside $S$.} \definitionBody{completelattice}{A {\em complete lattice} is a \Poset $\langle \LL, \lte \rangle$ s.t.\ every subset $S$ of $\LL$ has a unique greatest lower bound $\glb^{\LL} S$ and least upper bound $\lub^{\LL} S$} \definitionBody{topbot}{We use $\top^{\LL}$ and $\bot^{\LL}$ to denote $\lub^{\LL} \LL$ and $\glb^{\LL} \LL$ respectively.} \definitionBody{monotone}{A function $f: A \rightarrow B$ is {\em monotone} w.r.t. the orderings $\langle A, \lteSub{A} \rangle$ and $\langle B, \lteSub{B} \rangle$ if for all $a_1, a_2 \in A$, $a_1 \lte a_2$ implies $f(a_1) \lte f(a_2)$} \definitionBody{image}{Given a function $f: A \rightarrow B$, we use $f[A]$ to denote the {\em image of $f$} w.r.t.\ $A$, i.e.\ the set $\{ f(a) ~|~ a \in A \} \subseteq B$. With abuse to notation, when given a set of functions $F$, we write $\bigcup \{ f\image{A} ~|~ f \in F \}$ as $F\image{A}$.} \section{Deterministic AFT} The original definition of approximators from Denecker et al.\ \cite{denecker2000approximations}, which has been relaxed following Heyninck et al.\ \cite{nondet2}. % \begin{definition} % \definitionBody{deterministicapproximator}{ % A {\em deterministic approximator} $o: \LL \rightarrow \LL$ is an \Exact \Monotone function over a \CompleteLattice $\langle \LL, \lte \rangle$ % } % \end{definition} \begin{definitionOf}{deterministicapproximator} A {\em deterministic approximator} $o: \LL \rightarrow \LL$ is an \Exact \Monotone function over a \CompleteLattice $\langle \LL, \lte \rangle$ \end{definitionOf} \begin{definitionOf}{deterministicstablerevisionoperator} Given \AnApproximator $o: \LL \rightarrow \LL$, its {\em stable revision operator $S(o): \LL^2 \rightarrow \LL^2$} as follows: \begin{align*} S(o)(x, y) \define (\lfp~o(\partialApp, y), \lfp~(x, \partialApp)) \end{align*} \end{definitionOf} In later work, Denecker et al.~\cite{DeneckerMT04} establish an alternative theory of AFT based around operators that are restricted to the smaller domain, $\LL^c = \{ (x, y) \in \LL^2 ~|~ x \lte y \}$. The set $\L^c$ only contains the pairs that are \ConsistentPair. \definitionBody{consistentpair}{A pair $(x, y)$ is {\em consistent} if $x \lte y$.} \begin{definitionOf}{deterministicbetaapproximator} A {\em $\beta$-approximator} $o \LL^c \rightarrow \LL^c$ is \AnApproximator restricted and closed under $\LL^c$ \end{definitionOf} % Critically, stable revision is defined differently for \BetaApproximators In the same work, Denecker et al.~\cite{DeneckerMT04} use a slightly different notion of stable revision. Because, for a \BetaApproximator $o$, the function for any $(x, y) \in \LL^c$ \begin{align*} o(\partialApp, y)_1:& \latticeinterval{\bot}{y} \rightarrow \latticeinterval{\bot}{y} \\ o(x, \partialApp)_2:& \latticeinterval{x}{\top} \rightarrow \latticeinterval{x}{\top} \end{align*} So naturally, \Definition{deterministicstablerevisionoperator} applied to \BetaApproximators also uses this limited range. For our purposes, we adapt their definition to fit \Approximators and \BetaApproximators. \begin{definitionOf}{deterministicbetastablerevisionoperator} Given \AnApproximator $o: \LL^2 \rightarrow \LL^2$ \end{definitionOf} The symmetric version \begin{definitionOf}{deterministicbetastablerevisionoperator} Given \AnApproximator $o: \LL^2 \rightarrow \LL^2$ \begin{align*} \Sdetbeta(o)(x, y)_1 \define \glb_{\lte} \big( \fixpointsOf(o(\partialApp, y)_1) \setminus ((x \upclosure) \setminus (y \downclosure)) \big) \\ \Sdetbeta(o)(x, y)_2 \define \glb_{\lte} \big( \fixpointsOf(o(x, \partialApp)_2) \setminus ((y \downclosure) \setminus (x \upclosure)) \big) \end{align*} % This symmetric version likely only works on so-called "A-prudent" pairs \begin{align*} \Sdetbeta(o)(x, y)_1 \} &\define \glb ( \fixpointsOf(o(\partialApp, y)_1) \setminus \Big( ((x \glbBinary y) \upclosure) \symmetricdifference ((x \lubBinary y) \downclosure) \Big) )\\ \Sdetbeta(o)(x, y)_2 &\define \Sdetbeta(o)(y, x)_1 \end{align*} \end{definitionOf} \begin{theorem} For \AnApproximator $o: \LL^2 \rightarrow \LL^2$ s.t.\ $o\image{\LL^c} \subseteq \LL^c$, we have that $\Sdet(o\restriction_{\LL^c})$ and $\Sdetbeta(o)$ are equivalent. \end{theorem} \begin{proof} First we simplify $\Sdetbeta(o)(x, y)_1$ \begin{calculation}[=] \minLattice_{\lte} ( \fixpointsOf(o(\partialApp, y)_1) \setminus \Big( ((x \glbBinary y) \upclosure) \symmetricdifference ((x \lubBinary y) \downclosure) \Big) \step{inside: \begin{subcalculation}[=] ((x \glbBinary y) \upclosure) \symmetricdifference ((x \lubBinary y) \downclosure) \step{Applying $x \lte y$} (x \upclosure) \symmetricdifference (y \downclosure) \step{Expand $\symmetricdifference$} (x \upclosure \union~ y \downclosure) \setminus (x \upclosure \intersect~ y \downclosure) \step{Using $\fixpointsOf(o(\partialApp, y)_1) \subseteq (y \downclosure)$ we don't quite have this yet tho} \LL \setminus (x \upclosure \intersect~ y \downclosure) \end{subcalculation}} \step[]{Aside \begin{subcalculation} \step[]{By Assumption} \forall x \in [\bot, y],~ o(\partialApp, y)_1 \in [\bot, y] \step[\implies]{Follows} \fixpointsOf(o) \end{subcalculation}} \step{Leverage $\fixpointsOf(o(\partialApp, y)_1) \subseteq [\bot, y]$} BNy bye \step*{sdshds} jdskdjsk \end{calculation} \end{proof} \begin{propositionOf}{deterministicstablerevisionoperatorsymmetry} Given an \Approximator $o: \LL^2 \rightarrow \LL^2$ that is \Symmetric, its \BetaStableRevisionOperator $S(o)$ is also \Symmetric. Under symmetry the two are equivalent for consistent partition \end{propositionOf} \begin{proof} By \Symmetry, we have $\fixpointsOf(o(\partialApp, y)_1) = \fixpointsOf(o(x, \partialApp)_2)$ \end{proof} \Proposition{deterministicstablerevisionoperatorsymmetry} \begin{definition} \AnNdaoO is a $\langle \lte, \lte \rangle$-\Monotone function $o: \LL^2 \rightarrow \powersetO(\LL^2)$ s.t.\ for any $x \in \LL^2$ \begin{itemize} \item $o(x, x)_1 = o(x, x)_2$ \end{itemize} \end{definition} What about the bottom half does it matter? \begin{lemma}[From Heyninck] \AnNdaoO is consistent, for every $(x, y)$, $o(x, y)_1 \times o(x, y)_2$ contains at least one consistent pair. \end{lemma} \begin{definition} Regular stable revision \begin{align*} S(o)(x, y)_1 \define \minLattice_{\lte}(\fixpointsOf(o(\cdot, y))) \\ S(o)(x, y)_2 \define \minLattice_{\lte}(\fixpointsOf(o(x, \cdot))) \end{align*} \end{definition}