\documentclass{article} \usepackage{xspace} \usepackage{hyperref} \usepackage{bm} \usepackage[english]{babel} \usepackage{amsthm} \usepackage{amsmath} \usepackage{mathtools} \usepackage{hyperref} \hypersetup{ colorlinks=true, linkcolor=black, filecolor=black, urlcolor=black, pdfpagemode=FullScreen, } \input{notation.tex} \input{glossary.tex} \pagenumbering{arabic} \pagestyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}{Corollary} \newtheorem{lemma}{Lemma} \newtheorem{proposition}{Proposition} \begin{document} % \maketitle Hello world\cite{tarskilatticetheoretical1955} First, we generalize Knaster-Tarski Fixpoint Theorem. \section{Background} \input{sections/background.tex} \section{Content} \begin{theorem}[Tarski-Knaster Fixpoint Theorem~\cite{tarskilatticetheoretical1955}]\label{tarskitheorem} For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle \fixpointsOf(o), \lte \rangle$ is a \CompleteLattice. \end{theorem} \begin{theorem} Trivial attempt using set preimage / image to attain LUB / GLB in image lattice does not work. Consider antichain of 2 that map to a chain in image. The antichain's LUB does maps to a third, distinct element which extends the chain to three in the image If we attain LUB of preimage, then its not the least element :) \end{theorem} \begin{theorem}\label{imagelattice} For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle o\imageNoLink{\L}, \lte \rangle$ is a \CompleteLattice. \end{theorem} \begin{proof} Consider $\langle \L', \lte \rangle$ where \begin{align*} \L' \define \{ x' ~|~ x \in \L \} \\ x' \lte y' \iff x \lte y \textrm{ where } x, y \in \L \end{align*} Clearly, $\langle \L', \lte' \rangle$ is a \CompleteLattice. Combining $\L$ and $\L'$, we formulate $\L^*$: \begin{align*} \L^* &\define \{ \top^*, \bot^* \} \union \L \union \L' \\ \forall x^*, y^* \in \L^*, x^* \lte y^* &\iff \begin{cases} (x^* = \bot^*) \lor (y^* = \top^*), \\ \textrm{or } x, y \in \L, \\ \textrm{or } x', y' \in \L' \end{cases} \end{align*} It is easy to show that $\langle \L^*, \lte \rangle$ is a \CompleteLattice. Consider the operator $o^*$ that maps elements from $\L$ to $\L'$ and every element in $\L'$ to itself. \begin{align*} o^*(x) \define \begin{cases} o(x)' & \textrm{if } x \in \L \\ x & \textrm{otherwise} \end{cases} \end{align*} We have $o^*\image{\L \union \L'} \subseteq L'$ and $\fixpointsOf(o^*) = o\image{\L}' \union \{ \bot^*, \top^* \}$. By Tarski-Knaster Fixpoint Theorem (Theorem \ref{tarskitheorem}), $\fixpointsOf(o^*)$ is a \CompleteLattice. Thus, $o\image{\L} \union \{ \bot^*, \top^* \}$ is a \CompleteLattice. For any $S \subseteq \L$, we have $\glb S \not\in \{ \bot^*, \top^* \}$ and $\lub S \not\in \{ \bot^*, \top^* \}$, thus $\langle o\image{\L}, \preceq \rangle$ is a \CompleteLattice. \end{proof} The following follows directly from the contrapositive of Theorem \ref{imagelattice}. \begin{corollary} If $\langle o\image{\L}, \lte \rangle$ is not a \CompleteLattice, then $o$ is not \Monotone. \end{corollary} \begin{definition} An approximator set $H$ captures a nondeterministic approximator $o$ if for each consistent pair $(x, y)$ \begin{align*} (H\image{(x, y)}_1, H\image{(x, y)}_2) = o(x, y) \end{align*} \end{definition} \begin{theorem} A nondeterministic approximator $o$ has a set of \end{theorem} \begin{theorem} For any nondeterministic approximator $o$, there exists an approximator set $H$ s.t.\ gamma stable models correspond to n-stable models \end{theorem} \begin{proof} foo \end{proof} \bibliographystyle{plain} \bibliography{references} \end{document}