This commit is contained in:
Spencer Killen 2025-01-20 15:11:17 -07:00
parent e10c2cc2dd
commit f7ad76a40e
Signed by: sjkillen
GPG Key ID: 1DAA9D8D7C6ADD05
6 changed files with 60 additions and 46 deletions

View File

@ -1,3 +1,5 @@
\BOOKMARK [1][-]{section.1}{\376\377\000P\000r\000e\000l\000i\000m\000i\000n\000a\000r\000i\000e\000s}{}% 1
\BOOKMARK [1][-]{section.2}{\376\377\000L\000a\000t\000t\000i\000c\000e\000\040\000T\000h\000e\000o\000r\000y}{}% 2
\BOOKMARK [1][-]{section.3}{\376\377\000D\000e\000t\000e\000r\000n\000m\000i\000n\000i\000s\000t\000i\000c\000\040\000A\000F\000T}{}% 3
\BOOKMARK [1][-]{section.3}{\376\377\000D\000e\000t\000e\000r\000m\000i\000n\000i\000s\000t\000i\000c\000\040\000A\000F\000T}{}% 3
\BOOKMARK [1][-]{section.4}{\376\377\000S\000k\000e\000t\000c\000h\000\040\000N\000o\000v\000\040\0002\0000}{}% 4
\BOOKMARK [1][-]{section.5}{\376\377\000S\000k\000e\000t\000c\000h\000\040\000J\000a\000n\000\040\0002\0000}{}% 5

View File

@ -45,50 +45,11 @@ pdfpagemode=FullScreen,
\section{Preliminaries}
\input{sections/preliminaries.tex}
\section{Sketch Nov 20}
\input{sections/sketchnov20.tex}
\begin{definition}
\AnNdaoO is {\em extra consistent} if for every $\lte$-\Prefixpoint $y$ of $o(x, \cdot)_2$, $x \lte y$.
\end{definition}
\begin{definition}
"beta" stable revision
\begin{align*}
S(o)(x, y)_2 \define \minLattice_{\lte}(\fixpointsOf(o(x, \cdot)) \setminus ((y \downclosure) \setminus (x \upclosure)))
\end{align*}
\end{definition}
\begin{theorem}
For an extra consistent \Ndao $o$, regular stable revision is equivalent to beta stable revision
\end{theorem}
\begin{example}
SHowing without ultra consistency
\begin{align*}
o(x, y) \define (\{ \bot \}, \{ \bot \})
\end{align*}
below properties don't hold
\end{example}
\begin{proposition}\label{prop:ultra-consistency}
Works fo rdouble sided ordering
Given \AnNdaoO $o: \LL^2 \rightarrow \powersetO(\L)^2$ that is \Monotone from $\lte_p^2$ to $<_p^2$,\ we have for any consistent pair $(x, y) \in \LL^2$,
\begin{align*}
o(x, y) \lte_p^2 (o(x, y)_2, o(x, y)_1)
\end{align*}
\end{proposition}
\begin{lemma}
This probably needs double sides :()
Given an \Ndao $o$, if $y$ is a \Prefixpoint of $o(x, \cdot)_2$, then for some $y' \in o(x, \cdot)_2$, we have
$x \lte y' \lte y$.
\end{lemma}
\begin{proof}
begin
\end{proof}
\section{Sketch Jan 20}
\input{sections/sketchjan20.tex}
% iven an \gls{ndao} $o$, its {\em $\beta$-n-stable fixpoints} are fixpoints of the following
% \begin{align*}

View File

@ -16,7 +16,7 @@ With abuse to notation, when given a set of functions $F$, we write $\bigcup \{
\section{Deternministic AFT}
\section{Deterministic AFT}
The original definition of approximators from Denecker et al.\ \cite{denecker2000approximations}, which has been relaxed following Heyninck et al.\ \cite{nondet2}.

View File

@ -0,0 +1,6 @@
\begin{definitionOf}{chain}
Given a \Poset $\langle \LL, \lte \rangle$, a {\em chain} is a (possibly empty) set $C \subseteq \LL$ that is totally ordered, that is,
for all $x, y \in C$ either $x \lte y$ or $y \lte x$.
\end{definitionOf}

View File

@ -0,0 +1,43 @@
\begin{definition}
\AnNdaoO is {\em extra consistent} if for every $\lte$-\Prefixpoint $y$ of $o(x, \cdot)_2$, $x \lte y$.
\end{definition}
\begin{definition}
"beta" stable revision
\begin{align*}
S(o)(x, y)_2 \define \minLattice_{\lte}(\fixpointsOf(o(x, \cdot)) \setminus ((y \downclosure) \setminus (x \upclosure)))
\end{align*}
\end{definition}
\begin{theorem}
For an extra consistent \Ndao $o$, regular stable revision is equivalent to beta stable revision
\end{theorem}
\begin{example}
SHowing without ultra consistency
\begin{align*}
o(x, y) \define (\{ \bot \}, \{ \bot \})
\end{align*}
below properties don't hold
\end{example}
\begin{proposition}\label{prop:ultra-consistency}
Works fo rdouble sided ordering
Given \AnNdaoO $o: \LL^2 \rightarrow \powersetO(\L)^2$ that is \Monotone from $\lte_p^2$ to $<_p^2$,\ we have for any consistent pair $(x, y) \in \LL^2$,
\begin{align*}
o(x, y) \lte_p^2 (o(x, y)_2, o(x, y)_1)
\end{align*}
\end{proposition}
\begin{lemma}
This probably needs double sides :()
Given an \Ndao $o$, if $y$ is a \Prefixpoint of $o(x, \cdot)_2$, then for some $y' \in o(x, \cdot)_2$, we have
$x \lte y' \lte y$.
\end{lemma}
\begin{proof}
begin
\end{proof}

View File

@ -73,3 +73,5 @@
\newcommand{\minLattice}{\bm{min}}
\newcommand{\maxLattice}{\bm{max}}
\newcommand{\Chain}{\definitionLink{chain}{chain}}