This commit is contained in:
Spencer Killen 2024-12-09 08:23:54 -07:00
parent 376900f28c
commit e10c2cc2dd
Signed by: sjkillen
GPG Key ID: 3AF3117BA6FBB75B
3 changed files with 52 additions and 13 deletions

View File

@ -9,8 +9,10 @@
\usepackage[english]{babel}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{hyperref}
\usepackage[block]{calculation}
\hypersetup{
colorlinks=true,
linkcolor=black,

View File

@ -56,11 +56,6 @@ So naturally, \Definition{deterministicstablerevisionoperator} applied to \BetaA
For our purposes, we adapt their definition to fit \Approximators and \BetaApproximators.
\begin{definitionOf}{deterministicbetastablerevisionoperator}
Given \AnApproximator $o: \LL^2 \rightarrow \LL^2$
\begin{align*}
\Sdetbeta(o)(x, y)_1 \define \minLattice_{\lte} \big( \fixpointsOf(o(\partialApp, y)_1) \setminus ((x \upclosure) \setminus (y \downclosure)) \big)
\\
\Sdetbeta(o)(x, y)_2 \define \minLattice_{\lte} \big( \fixpointsOf(o(x, \partialApp)_2) \setminus ((y \downclosure) \setminus (x \upclosure)) \big)
\end{align*}
\end{definitionOf}
The symmetric version
@ -68,17 +63,56 @@ The symmetric version
\begin{definitionOf}{deterministicbetastablerevisionoperator}
Given \AnApproximator $o: \LL^2 \rightarrow \LL^2$
\begin{align*}
\Sdetbeta(o)(x, y)_1 &\define \minLattice_{\lte} \Bigg( \fixpointsOf(o(\partialApp, y)_1) \setminus \bigg(
\Big( ((x \glbBinary y) \upclosure) \union ((x \lubBinary y) \downclosure) \Big)
\setminus
\Big( ((x \glbBinary y) \upclosure) \intersect ((x \lubBinary y) \downclosure) \Big)
\bigg) \Bigg)
\Sdetbeta(o)(x, y)_1 \define \glb_{\lte} \big( \fixpointsOf(o(\partialApp, y)_1) \setminus ((x \upclosure) \setminus (y \downclosure)) \big)
\\
\Sdetbeta(o)(x, y)_2 \define \glb_{\lte} \big( \fixpointsOf(o(x, \partialApp)_2) \setminus ((y \downclosure) \setminus (x \upclosure)) \big)
\end{align*}
% This symmetric version likely only works on so-called "A-prudent" pairs
\begin{align*}
\Sdetbeta(o)(x, y)_1 \} &\define \glb (
\fixpointsOf(o(\partialApp, y)_1) \setminus
\Big( ((x \glbBinary y) \upclosure) \symmetricdifference ((x \lubBinary y) \downclosure) \Big)
)\\
\Sdetbeta(o)(x, y)_2 &\define \Sdetbeta(o)(y, x)_1
\end{align*}
\end{definitionOf}
\begin{theorem}
For \AnApproximator $o: \LL^2 \rightarrow \LL^2$ s.t.\ $o\image{\LL^c} \subseteq \LL^c$, we have that
$\Sdet(o\restriction_{\LL^c})$ and $\Sdetbeta(o)$ are equivalent.
\end{theorem}
\begin{proof}
First we simplify $\Sdetbeta(o)(x, y)_1$
\begin{calculation}[=]
\minLattice_{\lte} (
\fixpointsOf(o(\partialApp, y)_1) \setminus
\Big( ((x \glbBinary y) \upclosure) \symmetricdifference ((x \lubBinary y) \downclosure) \Big)
\step{inside:
\begin{subcalculation}[=]
((x \glbBinary y) \upclosure) \symmetricdifference ((x \lubBinary y) \downclosure)
\step{Applying $x \lte y$}
(x \upclosure) \symmetricdifference (y \downclosure)
\step{Expand $\symmetricdifference$}
(x \upclosure \union~ y \downclosure) \setminus (x \upclosure \intersect~ y \downclosure)
\step{Using $\fixpointsOf(o(\partialApp, y)_1) \subseteq (y \downclosure)$ we don't quite have this yet tho}
\LL \setminus (x \upclosure \intersect~ y \downclosure)
\end{subcalculation}}
\step[]{Aside \begin{subcalculation}
\step[]{By Assumption}
\forall x \in [\bot, y],~ o(\partialApp, y)_1 \in [\bot, y]
\step[\implies]{Follows}
\fixpointsOf(o)
\end{subcalculation}}
\step{Leverage $\fixpointsOf(o(\partialApp, y)_1) \subseteq [\bot, y]$}
BNy bye
\step*{sdshds}
jdskdjsk
\end{calculation}
\end{proof}
\begin{propositionOf}{deterministicstablerevisionoperatorsymmetry}
Given an \Approximator $o: \LL^2 \rightarrow \LL^2$ that is \Symmetric, its \BetaStableRevisionOperator $S(o)$ is also \Symmetric.
Under symmetry the two are equivalent for consistent partition

View File

@ -4,8 +4,9 @@
\newcommand{\lteSub}[1]{\lteNoLink_{#1}}
\newcommand{\image}[1]{[#1]}
\newcommand{\define}{\coloneqq}
\newcommand{\union}{\cup}
\newcommand{\intersect}{\cap}
\newcommand{\union}{\mathbin{\cup}}
\newcommand{\intersect}{\mathbin{\cap}}
\newcommand{\symmetricdifference}{\mathbin{\Delta}}
\newcommand{\glb}{\bigwedge}
\newcommand{\lub}{\bigvee}
\newcommand{\glbBinary}{\land}
@ -20,3 +21,5 @@
\newcommand{\Sdet}{S}
\newcommand{\Sdetbeta}{S^{\beta}}
\let\restrictionWithSpaces\restriction
\renewcommand{\restriction}{{\restrictionWithSpaces}}