This commit is contained in:
parent
376900f28c
commit
e10c2cc2dd
|
@ -9,8 +9,10 @@
|
||||||
\usepackage[english]{babel}
|
\usepackage[english]{babel}
|
||||||
\usepackage{amsthm}
|
\usepackage{amsthm}
|
||||||
\usepackage{amsmath}
|
\usepackage{amsmath}
|
||||||
|
\usepackage{amssymb}
|
||||||
\usepackage{mathtools}
|
\usepackage{mathtools}
|
||||||
\usepackage{hyperref}
|
\usepackage{hyperref}
|
||||||
|
\usepackage[block]{calculation}
|
||||||
\hypersetup{
|
\hypersetup{
|
||||||
colorlinks=true,
|
colorlinks=true,
|
||||||
linkcolor=black,
|
linkcolor=black,
|
||||||
|
|
|
@ -56,11 +56,6 @@ So naturally, \Definition{deterministicstablerevisionoperator} applied to \BetaA
|
||||||
For our purposes, we adapt their definition to fit \Approximators and \BetaApproximators.
|
For our purposes, we adapt their definition to fit \Approximators and \BetaApproximators.
|
||||||
\begin{definitionOf}{deterministicbetastablerevisionoperator}
|
\begin{definitionOf}{deterministicbetastablerevisionoperator}
|
||||||
Given \AnApproximator $o: \LL^2 \rightarrow \LL^2$
|
Given \AnApproximator $o: \LL^2 \rightarrow \LL^2$
|
||||||
\begin{align*}
|
|
||||||
\Sdetbeta(o)(x, y)_1 \define \minLattice_{\lte} \big( \fixpointsOf(o(\partialApp, y)_1) \setminus ((x \upclosure) \setminus (y \downclosure)) \big)
|
|
||||||
\\
|
|
||||||
\Sdetbeta(o)(x, y)_2 \define \minLattice_{\lte} \big( \fixpointsOf(o(x, \partialApp)_2) \setminus ((y \downclosure) \setminus (x \upclosure)) \big)
|
|
||||||
\end{align*}
|
|
||||||
\end{definitionOf}
|
\end{definitionOf}
|
||||||
|
|
||||||
The symmetric version
|
The symmetric version
|
||||||
|
@ -68,17 +63,56 @@ The symmetric version
|
||||||
\begin{definitionOf}{deterministicbetastablerevisionoperator}
|
\begin{definitionOf}{deterministicbetastablerevisionoperator}
|
||||||
Given \AnApproximator $o: \LL^2 \rightarrow \LL^2$
|
Given \AnApproximator $o: \LL^2 \rightarrow \LL^2$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\Sdetbeta(o)(x, y)_1 &\define \minLattice_{\lte} \Bigg( \fixpointsOf(o(\partialApp, y)_1) \setminus \bigg(
|
\Sdetbeta(o)(x, y)_1 \define \glb_{\lte} \big( \fixpointsOf(o(\partialApp, y)_1) \setminus ((x \upclosure) \setminus (y \downclosure)) \big)
|
||||||
\Big( ((x \glbBinary y) \upclosure) \union ((x \lubBinary y) \downclosure) \Big)
|
|
||||||
\setminus
|
|
||||||
\Big( ((x \glbBinary y) \upclosure) \intersect ((x \lubBinary y) \downclosure) \Big)
|
|
||||||
\bigg) \Bigg)
|
|
||||||
\\
|
\\
|
||||||
|
\Sdetbeta(o)(x, y)_2 \define \glb_{\lte} \big( \fixpointsOf(o(x, \partialApp)_2) \setminus ((y \downclosure) \setminus (x \upclosure)) \big)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
% This symmetric version likely only works on so-called "A-prudent" pairs
|
||||||
|
\begin{align*}
|
||||||
|
\Sdetbeta(o)(x, y)_1 \} &\define \glb (
|
||||||
|
\fixpointsOf(o(\partialApp, y)_1) \setminus
|
||||||
|
\Big( ((x \glbBinary y) \upclosure) \symmetricdifference ((x \lubBinary y) \downclosure) \Big)
|
||||||
|
)\\
|
||||||
\Sdetbeta(o)(x, y)_2 &\define \Sdetbeta(o)(y, x)_1
|
\Sdetbeta(o)(x, y)_2 &\define \Sdetbeta(o)(y, x)_1
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{definitionOf}
|
\end{definitionOf}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{theorem}
|
||||||
|
For \AnApproximator $o: \LL^2 \rightarrow \LL^2$ s.t.\ $o\image{\LL^c} \subseteq \LL^c$, we have that
|
||||||
|
$\Sdet(o\restriction_{\LL^c})$ and $\Sdetbeta(o)$ are equivalent.
|
||||||
|
\end{theorem}
|
||||||
|
\begin{proof}
|
||||||
|
First we simplify $\Sdetbeta(o)(x, y)_1$
|
||||||
|
\begin{calculation}[=]
|
||||||
|
\minLattice_{\lte} (
|
||||||
|
\fixpointsOf(o(\partialApp, y)_1) \setminus
|
||||||
|
\Big( ((x \glbBinary y) \upclosure) \symmetricdifference ((x \lubBinary y) \downclosure) \Big)
|
||||||
|
\step{inside:
|
||||||
|
\begin{subcalculation}[=]
|
||||||
|
((x \glbBinary y) \upclosure) \symmetricdifference ((x \lubBinary y) \downclosure)
|
||||||
|
\step{Applying $x \lte y$}
|
||||||
|
(x \upclosure) \symmetricdifference (y \downclosure)
|
||||||
|
\step{Expand $\symmetricdifference$}
|
||||||
|
(x \upclosure \union~ y \downclosure) \setminus (x \upclosure \intersect~ y \downclosure)
|
||||||
|
\step{Using $\fixpointsOf(o(\partialApp, y)_1) \subseteq (y \downclosure)$ we don't quite have this yet tho}
|
||||||
|
\LL \setminus (x \upclosure \intersect~ y \downclosure)
|
||||||
|
\end{subcalculation}}
|
||||||
|
\step[]{Aside \begin{subcalculation}
|
||||||
|
\step[]{By Assumption}
|
||||||
|
\forall x \in [\bot, y],~ o(\partialApp, y)_1 \in [\bot, y]
|
||||||
|
\step[\implies]{Follows}
|
||||||
|
\fixpointsOf(o)
|
||||||
|
\end{subcalculation}}
|
||||||
|
\step{Leverage $\fixpointsOf(o(\partialApp, y)_1) \subseteq [\bot, y]$}
|
||||||
|
BNy bye
|
||||||
|
\step*{sdshds}
|
||||||
|
jdskdjsk
|
||||||
|
\end{calculation}
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
\begin{propositionOf}{deterministicstablerevisionoperatorsymmetry}
|
\begin{propositionOf}{deterministicstablerevisionoperatorsymmetry}
|
||||||
Given an \Approximator $o: \LL^2 \rightarrow \LL^2$ that is \Symmetric, its \BetaStableRevisionOperator $S(o)$ is also \Symmetric.
|
Given an \Approximator $o: \LL^2 \rightarrow \LL^2$ that is \Symmetric, its \BetaStableRevisionOperator $S(o)$ is also \Symmetric.
|
||||||
Under symmetry the two are equivalent for consistent partition
|
Under symmetry the two are equivalent for consistent partition
|
||||||
|
|
|
@ -4,8 +4,9 @@
|
||||||
\newcommand{\lteSub}[1]{\lteNoLink_{#1}}
|
\newcommand{\lteSub}[1]{\lteNoLink_{#1}}
|
||||||
\newcommand{\image}[1]{[#1]}
|
\newcommand{\image}[1]{[#1]}
|
||||||
\newcommand{\define}{\coloneqq}
|
\newcommand{\define}{\coloneqq}
|
||||||
\newcommand{\union}{\cup}
|
\newcommand{\union}{\mathbin{\cup}}
|
||||||
\newcommand{\intersect}{\cap}
|
\newcommand{\intersect}{\mathbin{\cap}}
|
||||||
|
\newcommand{\symmetricdifference}{\mathbin{\Delta}}
|
||||||
\newcommand{\glb}{\bigwedge}
|
\newcommand{\glb}{\bigwedge}
|
||||||
\newcommand{\lub}{\bigvee}
|
\newcommand{\lub}{\bigvee}
|
||||||
\newcommand{\glbBinary}{\land}
|
\newcommand{\glbBinary}{\land}
|
||||||
|
@ -19,4 +20,6 @@
|
||||||
\newcommand{\latticeinterval}[2]{[#1, #2]}
|
\newcommand{\latticeinterval}[2]{[#1, #2]}
|
||||||
|
|
||||||
\newcommand{\Sdet}{S}
|
\newcommand{\Sdet}{S}
|
||||||
\newcommand{\Sdetbeta}{S^{\beta}}
|
\newcommand{\Sdetbeta}{S^{\beta}}
|
||||||
|
\let\restrictionWithSpaces\restriction
|
||||||
|
\renewcommand{\restriction}{{\restrictionWithSpaces}}
|
Loading…
Reference in New Issue