This commit is contained in:
parent
f7ad76a40e
commit
a19610d0aa
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"discord.enabled": true
|
||||
}
|
|
@ -12,6 +12,8 @@
|
|||
\usepackage{amssymb}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{xfrac}
|
||||
\usepackage{stackengine}
|
||||
\usepackage[block]{calculation}
|
||||
\hypersetup{
|
||||
colorlinks=true,
|
||||
|
@ -32,6 +34,7 @@ pdfpagemode=FullScreen,
|
|||
\newtheorem{proposition}{Proposition}
|
||||
\newtheorem{definition}{Definition}
|
||||
\newtheorem{example}{Example}
|
||||
\newtheorem{remark}{Remark}
|
||||
|
||||
|
||||
\title{Consistent n-Approximators ($\beta$)}
|
||||
|
|
|
@ -2,5 +2,62 @@
|
|||
\begin{definitionOf}{chain}
|
||||
Given a \Poset $\langle \LL, \lte \rangle$, a {\em chain} is a (possibly empty) set $C \subseteq \LL$ that is totally ordered, that is,
|
||||
for all $x, y \in C$ either $x \lte y$ or $y \lte x$.
|
||||
|
||||
\end{definitionOf}
|
||||
|
||||
\begin{definitionOf}{setordering}
|
||||
Given a preorder, $\langle \LL, \lte \rangle$
|
||||
We define a set ordering $\langle \powersetO(\LL), \lte \rangle$
|
||||
s.t. for any $X, Y \subseteq \LL$
|
||||
\begin{align*}
|
||||
X \lte Y \textrm{ iff } (X \upclosure) \supseteq Y
|
||||
\end{align*}
|
||||
\end{definitionOf}
|
||||
|
||||
\begin{definitionOf}{chaincompleteposet}
|
||||
We call \Poset $\langle \LL, \lte \rangle$ {\em chain-complete} if $\lub \LL$ is unique and in $\LL$ and for ever chain $C \subseteq \LL$
|
||||
\begin{enumerate}
|
||||
\item $\lub \LL$ is unique and in $\LL$, and
|
||||
\item for every chain $C \subseteq \LL$, we have $\lub C \in \LL$
|
||||
\end{enumerate}
|
||||
\end{definitionOf}
|
||||
|
||||
\begin{definitionOf}{antisymmequiv}
|
||||
Given a set $\powersetO(\LL)^2$, define $\antisymmequiv{\powersetO(\LL)^2}$ to be the set obtained by removing any elements $x \in \powersetO(\LL)^2$ s.t. $x \not= x \upprecision$.
|
||||
\end{definitionOf}
|
||||
|
||||
\begin{remark}
|
||||
The \Preorder $\langle \powersetO(\LL)^2, \lteSetLPrecision \rangle$ lacks \Antisymmetry, thus it is not a \Poset.
|
||||
We can construct and equivalence relation $\equiv$ based on the \Antisymmetry condition:
|
||||
$x \equiv x' \textrm{ iff } x \lteSetLPrecision x' \textrm{ and } x' \lteSetLPrecision x$.
|
||||
Each equivalence class $[x]$ can be uniquely represented by $x \upprecision$. Thus, another way of viewing
|
||||
$\langle \antisymmequiv{\powersetO(\LL)^2}, \lteSetLPrecision \rangle$
|
||||
is as the quotient under the above equivalence relation.
|
||||
\end{remark}
|
||||
|
||||
\begin{lemma}
|
||||
Given $\langle \antisymmequiv{\powersetO(\LL)^2}, \lteSetLPrecision \rangle$, and $x, y \in \powersetO(\LL)^2$
|
||||
\begin{enumerate}
|
||||
\item $x \lteSetRPrecision y$.
|
||||
\item if $x \lteSetLPrecision y$ then $x \lteSetLRPrecision y$.
|
||||
\end{enumerate}
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
(1) We have $\top_{\ltePrecision} \in y$. (2) Follows from (1).
|
||||
\end{proof}
|
||||
|
||||
|
||||
\begin{propositionOf}{chaincompletepreserve}
|
||||
Let $\langle \LL, \lte \rangle$ be a \CompleteLattice and $o: \LL^2 \rightarrow \powersetO(\LL)$ \AnNdao.
|
||||
The structure $\langle \antisymmequiv{o\image{R}}, \lteSetL \rangle$ is a \ChainCompletePoset where $R$ is one of the following:
|
||||
\begin{enumerate}
|
||||
\item\label{chaincompletepreserve:enum:a} $\LL^2$,
|
||||
\item\label{chaincompletepreserve:enum:b} $\LLc$
|
||||
\item\label{chaincompletepreserve:enum:c} $\postfixpointsOf(o)$
|
||||
\item\label{chaincompletepreserve:enum:d} $\prefixpointsOf(S(o))$
|
||||
\end{enumerate}
|
||||
\end{propositionOf}
|
||||
\begin{proof}
|
||||
This should be simpler, the incoming is chain complete poset so should inject one ?
|
||||
|
||||
|
||||
\end{proof}
|
10
glossary.tex
10
glossary.tex
|
@ -57,12 +57,22 @@
|
|||
\let\powersetONoLink\powersetO{}
|
||||
\renewcommand{\powersetO}{\definitionLink{powerset}{\powersetONoLink}}
|
||||
|
||||
\newcommand{\Preorder}{\definitionLink{preorder}{preorder}}
|
||||
\newcommand{\Antisymmetry}{\definitionLink{antisymmetry}{antisymmetry}}
|
||||
\newcommand{\Poset}{\definitionLink{poset}{poset}}
|
||||
\newcommand{\ChainCompletePoset}{\definitionLink{chaincompleteposet}{chain-complete poset}}
|
||||
\newcommand{\ChainCompletePosets}{\definitionLink{chaincompleteposet}{chain-complete posets}}
|
||||
\newcommand{\AChainCompletePoset}{\definitionLink{chaincompleteposet}{a chain-complete poset}}
|
||||
\let\lteNoLink\lte{}
|
||||
\renewcommand{\lte}{\definitionLink{poset}{\lteNoLink}}
|
||||
\let\lteSubNoLink\lteSub{}
|
||||
\renewcommand{\lteSub}[1]{\definitionLink{poset}{\lteSubNoLink{#1}}}
|
||||
|
||||
\let\gteNoLink\gte{}
|
||||
\renewcommand{\gte}{\definitionLink{poset}{\gteNoLink}}
|
||||
\let\gteSubNoLink\gteSub{}
|
||||
\renewcommand{\gteSub}[1]{\definitionLink{poset}{\gteSubNoLink{#1}}}
|
||||
|
||||
|
||||
\newcommand{\Ndao}{\definitionLink{ndao}{ndao}}
|
||||
\newcommand{\AnNdao}{an \definitionLink{ndao}{ndao}}
|
||||
|
|
24
notation.tex
24
notation.tex
|
@ -1,11 +1,25 @@
|
|||
|
||||
\newcommand{\fixpointsOf}{\textbf{\textit{fix}}}
|
||||
\newcommand{\prefixpointsOf}{\textbf{\textit{prefix}}}
|
||||
\newcommand{\postfixpointsOf}{\textbf{\textit{postfix}}}
|
||||
\newcommand{\LL}{\mathcal{L}}
|
||||
\newcommand{\lte}{\preceq}
|
||||
\newcommand{\ltePrecision}{\preceq_p^2}
|
||||
\newcommand{\lteSub}[1]{\lteNoLink_{#1}}
|
||||
\newcommand{\gteSub}[1]{\gteNoLink_{#1}}
|
||||
\newcommand{\gte}{\succeq}
|
||||
\newcommand{\lteSetR}{\preccurlyeq}
|
||||
\newcommand{\lteSetRPrecision}{\preccurlyeq_p^2}
|
||||
\newcommand{\lteSetL}{\curlyeqprec}
|
||||
\newcommand{\lteSetLPrecision}{\curlyeqprec_p^2}
|
||||
\newcommand{\lteSetLR}{\mathbin{\stackMath\topinset{\preccurlyeq}{\curlyeqprec}{}{}}}
|
||||
\newcommand{\lteSetLRPrecision}{\mathbin{\stackMath\topinset{\preccurlyeq}{\curlyeqprec}{}{}_p^2}}
|
||||
\newcommand{\image}[1]{[#1]}
|
||||
\newcommand{\define}{\coloneqq}
|
||||
\newcommand{\union}{\mathbin{\cup}}
|
||||
\newcommand{\unionBig}{\bigcup}
|
||||
\newcommand{\intersect}{\mathbin{\cap}}
|
||||
\newcommand{\intersectBig}{\bigcap}
|
||||
\newcommand{\symmetricdifference}{\mathbin{\Delta}}
|
||||
\newcommand{\glb}{\bigwedge}
|
||||
\newcommand{\lub}{\bigvee}
|
||||
|
@ -14,6 +28,7 @@
|
|||
\newcommand{\powerset}{\wp}
|
||||
\newcommand{\powersetO}{\wp^o}
|
||||
\newcommand{\upclosure}{\uparrow}
|
||||
\newcommand{\upprecision}{\uparrow^2_p}
|
||||
\newcommand{\downclosure}{\downarrow}
|
||||
\newcommand{\partialApp}{\cdot}
|
||||
\newcommand{\lfp}{\textbf{lfp}}
|
||||
|
@ -23,3 +38,12 @@
|
|||
\newcommand{\Sdetbeta}{S^{\beta}}
|
||||
\let\restrictionWithSpaces\restriction
|
||||
\renewcommand{\restriction}{{\restrictionWithSpaces}}
|
||||
|
||||
\newcommand{\quotient}[2]{\sfrac{#1}{#2}}
|
||||
|
||||
\newcommand{\antisymmequiv}[1]{\quotient{#1}{\upprecision}}
|
||||
|
||||
\newcommand{\LLc}{\LLNoLink^{c}}
|
||||
|
||||
\newcommand{\projL}{\Pi_{1}}
|
||||
\newcommand{\projR}{\Pi_{2}}
|
Loading…
Reference in New Issue