This commit is contained in:
Spencer Killen 2025-01-22 19:37:36 -07:00
parent f7ad76a40e
commit a19610d0aa
Signed by: sjkillen
GPG Key ID: 3AF3117BA6FBB75B
5 changed files with 100 additions and 3 deletions

3
betastable/.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,3 @@
{
"discord.enabled": true
}

View File

@ -12,6 +12,8 @@
\usepackage{amssymb} \usepackage{amssymb}
\usepackage{mathtools} \usepackage{mathtools}
\usepackage{hyperref} \usepackage{hyperref}
\usepackage{xfrac}
\usepackage{stackengine}
\usepackage[block]{calculation} \usepackage[block]{calculation}
\hypersetup{ \hypersetup{
colorlinks=true, colorlinks=true,
@ -32,6 +34,7 @@ pdfpagemode=FullScreen,
\newtheorem{proposition}{Proposition} \newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition} \newtheorem{definition}{Definition}
\newtheorem{example}{Example} \newtheorem{example}{Example}
\newtheorem{remark}{Remark}
\title{Consistent n-Approximators ($\beta$)} \title{Consistent n-Approximators ($\beta$)}

View File

@ -2,5 +2,62 @@
\begin{definitionOf}{chain} \begin{definitionOf}{chain}
Given a \Poset $\langle \LL, \lte \rangle$, a {\em chain} is a (possibly empty) set $C \subseteq \LL$ that is totally ordered, that is, Given a \Poset $\langle \LL, \lte \rangle$, a {\em chain} is a (possibly empty) set $C \subseteq \LL$ that is totally ordered, that is,
for all $x, y \in C$ either $x \lte y$ or $y \lte x$. for all $x, y \in C$ either $x \lte y$ or $y \lte x$.
\end{definitionOf} \end{definitionOf}
\begin{definitionOf}{setordering}
Given a preorder, $\langle \LL, \lte \rangle$
We define a set ordering $\langle \powersetO(\LL), \lte \rangle$
s.t. for any $X, Y \subseteq \LL$
\begin{align*}
X \lte Y \textrm{ iff } (X \upclosure) \supseteq Y
\end{align*}
\end{definitionOf}
\begin{definitionOf}{chaincompleteposet}
We call \Poset $\langle \LL, \lte \rangle$ {\em chain-complete} if $\lub \LL$ is unique and in $\LL$ and for ever chain $C \subseteq \LL$
\begin{enumerate}
\item $\lub \LL$ is unique and in $\LL$, and
\item for every chain $C \subseteq \LL$, we have $\lub C \in \LL$
\end{enumerate}
\end{definitionOf}
\begin{definitionOf}{antisymmequiv}
Given a set $\powersetO(\LL)^2$, define $\antisymmequiv{\powersetO(\LL)^2}$ to be the set obtained by removing any elements $x \in \powersetO(\LL)^2$ s.t. $x \not= x \upprecision$.
\end{definitionOf}
\begin{remark}
The \Preorder $\langle \powersetO(\LL)^2, \lteSetLPrecision \rangle$ lacks \Antisymmetry, thus it is not a \Poset.
We can construct and equivalence relation $\equiv$ based on the \Antisymmetry condition:
$x \equiv x' \textrm{ iff } x \lteSetLPrecision x' \textrm{ and } x' \lteSetLPrecision x$.
Each equivalence class $[x]$ can be uniquely represented by $x \upprecision$. Thus, another way of viewing
$\langle \antisymmequiv{\powersetO(\LL)^2}, \lteSetLPrecision \rangle$
is as the quotient under the above equivalence relation.
\end{remark}
\begin{lemma}
Given $\langle \antisymmequiv{\powersetO(\LL)^2}, \lteSetLPrecision \rangle$, and $x, y \in \powersetO(\LL)^2$
\begin{enumerate}
\item $x \lteSetRPrecision y$.
\item if $x \lteSetLPrecision y$ then $x \lteSetLRPrecision y$.
\end{enumerate}
\end{lemma}
\begin{proof}
(1) We have $\top_{\ltePrecision} \in y$. (2) Follows from (1).
\end{proof}
\begin{propositionOf}{chaincompletepreserve}
Let $\langle \LL, \lte \rangle$ be a \CompleteLattice and $o: \LL^2 \rightarrow \powersetO(\LL)$ \AnNdao.
The structure $\langle \antisymmequiv{o\image{R}}, \lteSetL \rangle$ is a \ChainCompletePoset where $R$ is one of the following:
\begin{enumerate}
\item\label{chaincompletepreserve:enum:a} $\LL^2$,
\item\label{chaincompletepreserve:enum:b} $\LLc$
\item\label{chaincompletepreserve:enum:c} $\postfixpointsOf(o)$
\item\label{chaincompletepreserve:enum:d} $\prefixpointsOf(S(o))$
\end{enumerate}
\end{propositionOf}
\begin{proof}
This should be simpler, the incoming is chain complete poset so should inject one ?
\end{proof}

View File

@ -57,12 +57,22 @@
\let\powersetONoLink\powersetO{} \let\powersetONoLink\powersetO{}
\renewcommand{\powersetO}{\definitionLink{powerset}{\powersetONoLink}} \renewcommand{\powersetO}{\definitionLink{powerset}{\powersetONoLink}}
\newcommand{\Preorder}{\definitionLink{preorder}{preorder}}
\newcommand{\Antisymmetry}{\definitionLink{antisymmetry}{antisymmetry}}
\newcommand{\Poset}{\definitionLink{poset}{poset}} \newcommand{\Poset}{\definitionLink{poset}{poset}}
\newcommand{\ChainCompletePoset}{\definitionLink{chaincompleteposet}{chain-complete poset}}
\newcommand{\ChainCompletePosets}{\definitionLink{chaincompleteposet}{chain-complete posets}}
\newcommand{\AChainCompletePoset}{\definitionLink{chaincompleteposet}{a chain-complete poset}}
\let\lteNoLink\lte{} \let\lteNoLink\lte{}
\renewcommand{\lte}{\definitionLink{poset}{\lteNoLink}} \renewcommand{\lte}{\definitionLink{poset}{\lteNoLink}}
\let\lteSubNoLink\lteSub{} \let\lteSubNoLink\lteSub{}
\renewcommand{\lteSub}[1]{\definitionLink{poset}{\lteSubNoLink{#1}}} \renewcommand{\lteSub}[1]{\definitionLink{poset}{\lteSubNoLink{#1}}}
\let\gteNoLink\gte{}
\renewcommand{\gte}{\definitionLink{poset}{\gteNoLink}}
\let\gteSubNoLink\gteSub{}
\renewcommand{\gteSub}[1]{\definitionLink{poset}{\gteSubNoLink{#1}}}
\newcommand{\Ndao}{\definitionLink{ndao}{ndao}} \newcommand{\Ndao}{\definitionLink{ndao}{ndao}}
\newcommand{\AnNdao}{an \definitionLink{ndao}{ndao}} \newcommand{\AnNdao}{an \definitionLink{ndao}{ndao}}

View File

@ -1,11 +1,25 @@
\newcommand{\fixpointsOf}{\textbf{\textit{fix}}} \newcommand{\fixpointsOf}{\textbf{\textit{fix}}}
\newcommand{\prefixpointsOf}{\textbf{\textit{prefix}}}
\newcommand{\postfixpointsOf}{\textbf{\textit{postfix}}}
\newcommand{\LL}{\mathcal{L}} \newcommand{\LL}{\mathcal{L}}
\newcommand{\lte}{\preceq} \newcommand{\lte}{\preceq}
\newcommand{\ltePrecision}{\preceq_p^2}
\newcommand{\lteSub}[1]{\lteNoLink_{#1}} \newcommand{\lteSub}[1]{\lteNoLink_{#1}}
\newcommand{\gteSub}[1]{\gteNoLink_{#1}}
\newcommand{\gte}{\succeq}
\newcommand{\lteSetR}{\preccurlyeq}
\newcommand{\lteSetRPrecision}{\preccurlyeq_p^2}
\newcommand{\lteSetL}{\curlyeqprec}
\newcommand{\lteSetLPrecision}{\curlyeqprec_p^2}
\newcommand{\lteSetLR}{\mathbin{\stackMath\topinset{\preccurlyeq}{\curlyeqprec}{}{}}}
\newcommand{\lteSetLRPrecision}{\mathbin{\stackMath\topinset{\preccurlyeq}{\curlyeqprec}{}{}_p^2}}
\newcommand{\image}[1]{[#1]} \newcommand{\image}[1]{[#1]}
\newcommand{\define}{\coloneqq} \newcommand{\define}{\coloneqq}
\newcommand{\union}{\mathbin{\cup}} \newcommand{\union}{\mathbin{\cup}}
\newcommand{\unionBig}{\bigcup}
\newcommand{\intersect}{\mathbin{\cap}} \newcommand{\intersect}{\mathbin{\cap}}
\newcommand{\intersectBig}{\bigcap}
\newcommand{\symmetricdifference}{\mathbin{\Delta}} \newcommand{\symmetricdifference}{\mathbin{\Delta}}
\newcommand{\glb}{\bigwedge} \newcommand{\glb}{\bigwedge}
\newcommand{\lub}{\bigvee} \newcommand{\lub}{\bigvee}
@ -14,6 +28,7 @@
\newcommand{\powerset}{\wp} \newcommand{\powerset}{\wp}
\newcommand{\powersetO}{\wp^o} \newcommand{\powersetO}{\wp^o}
\newcommand{\upclosure}{\uparrow} \newcommand{\upclosure}{\uparrow}
\newcommand{\upprecision}{\uparrow^2_p}
\newcommand{\downclosure}{\downarrow} \newcommand{\downclosure}{\downarrow}
\newcommand{\partialApp}{\cdot} \newcommand{\partialApp}{\cdot}
\newcommand{\lfp}{\textbf{lfp}} \newcommand{\lfp}{\textbf{lfp}}
@ -23,3 +38,12 @@
\newcommand{\Sdetbeta}{S^{\beta}} \newcommand{\Sdetbeta}{S^{\beta}}
\let\restrictionWithSpaces\restriction \let\restrictionWithSpaces\restriction
\renewcommand{\restriction}{{\restrictionWithSpaces}} \renewcommand{\restriction}{{\restrictionWithSpaces}}
\newcommand{\quotient}[2]{\sfrac{#1}{#2}}
\newcommand{\antisymmequiv}[1]{\quotient{#1}{\upprecision}}
\newcommand{\LLc}{\LLNoLink^{c}}
\newcommand{\projL}{\Pi_{1}}
\newcommand{\projR}{\Pi_{2}}