This commit is contained in:
Spencer Killen 2025-01-24 14:01:18 -07:00
parent a19610d0aa
commit 510fa6d0a6
Signed by: sjkillen
GPG Key ID: 1DAA9D8D7C6ADD05
4 changed files with 18 additions and 2 deletions

View File

@ -3,3 +3,4 @@
\BOOKMARK [1][-]{section.3}{\376\377\000D\000e\000t\000e\000r\000m\000i\000n\000i\000s\000t\000i\000c\000\040\000A\000F\000T}{}% 3 \BOOKMARK [1][-]{section.3}{\376\377\000D\000e\000t\000e\000r\000m\000i\000n\000i\000s\000t\000i\000c\000\040\000A\000F\000T}{}% 3
\BOOKMARK [1][-]{section.4}{\376\377\000S\000k\000e\000t\000c\000h\000\040\000N\000o\000v\000\040\0002\0000}{}% 4 \BOOKMARK [1][-]{section.4}{\376\377\000S\000k\000e\000t\000c\000h\000\040\000N\000o\000v\000\040\0002\0000}{}% 4
\BOOKMARK [1][-]{section.5}{\376\377\000S\000k\000e\000t\000c\000h\000\040\000J\000a\000n\000\040\0002\0000}{}% 5 \BOOKMARK [1][-]{section.5}{\376\377\000S\000k\000e\000t\000c\000h\000\040\000J\000a\000n\000\040\0002\0000}{}% 5
\BOOKMARK [1][-]{section.6}{\376\377\000S\000k\000e\000t\000c\000h\000\040\000J\000a\000n\000\040\0002\0004\000t\000h}{}% 6

View File

@ -75,8 +75,8 @@ pdfpagemode=FullScreen,
\section{Sketch Jan 24th}
\input{sections/sketchjan24.tex}
\bibliographystyle{plain} \bibliographystyle{plain}
\bibliography{../references} \bibliography{../references}

View File

@ -0,0 +1,14 @@
\begin{propositionOf}{ndaoSmonotone}
S for \Ndao s is monotone
\end{propositionOf}
\begin{proof}
Have $(x, y) \ltePrecision (x', y')$.
Assume downwards closed, $S(o)(x', y')_1$ is nonempty.
Let $x^{*} \in S(o)(x', y')_1$
We have $x^{*} \in o(x^{*}, y')$.
By the \Monotonicity of $o$, $\exists x^{**} \in o(x^{*}, y)$ s.t. $x^{**} \lte x^{*}$.
By transfinite induction, generate a chain of prefixpoints using the process above.
By downwards closed, there is a minimal, that is a fixpoint?
\end{proof}

View File

@ -18,6 +18,7 @@
\newcommand{\LeastFixpoint}{\definitionLink{leastfixpoint}{least fixpoint}} \newcommand{\LeastFixpoint}{\definitionLink{leastfixpoint}{least fixpoint}}
\newcommand{\ConsistentPair}{\definitionLink{consistentpair}{consistent}} \newcommand{\ConsistentPair}{\definitionLink{consistentpair}{consistent}}
\newcommand{\Monotone}{\definitionLink{monotone}{monotone}} \newcommand{\Monotone}{\definitionLink{monotone}{monotone}}
\newcommand{\Monotonicity}{\definitionLink{monotonicity}{monotonicity}}
\newcommand{\Exact}{\definitionLink{deterministicexactapproximator}{exact}} \newcommand{\Exact}{\definitionLink{deterministicexactapproximator}{exact}}
\newcommand{\Symmetric}{\definitionLink{deterministicsymmetricapproximator}{symmetric}} \newcommand{\Symmetric}{\definitionLink{deterministicsymmetricapproximator}{symmetric}}
\newcommand{\Symmetry}{\definitionLink{deterministicsymmetricapproximator}{symmetry}} \newcommand{\Symmetry}{\definitionLink{deterministicsymmetricapproximator}{symmetry}}