This commit is contained in:
parent
70bc640443
commit
323f496b1f
|
@ -0,0 +1,11 @@
|
|||
all: report.pdf
|
||||
|
||||
%.pdf: %.tex
|
||||
latexmk -f -e '$$max_repeat=10' -pdf $<
|
||||
|
||||
clean:
|
||||
${RM} *.pdf
|
||||
${RM} *.bbl
|
||||
${RM} *.blg
|
||||
|
||||
latexmk -C
|
|
@ -0,0 +1,129 @@
|
|||
\documentclass{article}
|
||||
|
||||
\usepackage{xspace}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{bm}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{amsthm}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{hyperref}
|
||||
\hypersetup{
|
||||
colorlinks=true,
|
||||
linkcolor=black,
|
||||
filecolor=black,
|
||||
urlcolor=black,
|
||||
pdfpagemode=FullScreen,
|
||||
}
|
||||
|
||||
\input{../notation.tex}
|
||||
\input{../glossary.tex}
|
||||
\pagenumbering{arabic}
|
||||
\pagestyle{plain}
|
||||
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{corollary}{Corollary}
|
||||
\newtheorem{lemma}{Lemma}
|
||||
\newtheorem{proposition}{Proposition}
|
||||
\newtheorem{definition}{Definition}
|
||||
\newtheorem{example}{Example}
|
||||
|
||||
|
||||
\title{Consistent n-Approximators ($\beta$)}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\begin{definition}
|
||||
\AnNdaoO is a $\langle \lte, \lte \rangle$-\Monotone function $o: \LL^2 \rightarrow \powersetO(\LL^2)$ s.t.\ for any $x \in \LL^2$
|
||||
\begin{itemize}
|
||||
\item $o(x, x)_1 = o(x, x)_2$
|
||||
\end{itemize}
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}
|
||||
\AnNdaoO is {\em extra consistent} if for every $\lte$-\Prefixpoint $y$ of $o(x, \cdot)_2$, $x \lte y$.
|
||||
\end{definition}
|
||||
What about the bottom half does it matter?
|
||||
|
||||
\begin{lemma}[From Heyninck]
|
||||
\AnNdaoO is consistent, for every $(x, y)$, $o(x, y)_1 \times o(x, y)_2$ contains at least one consistent pair.
|
||||
\end{lemma}
|
||||
|
||||
\begin{definition}
|
||||
Regular stable revision
|
||||
\begin{align*}
|
||||
S(o)(x, y)_1 \define \minLattice_{\lte}(\fixpointsOf(o(\cdot, y))) \\
|
||||
S(o)(x, y)_2 \define \minLattice_{\lte}(\fixpointsOf(o(x, \cdot)))
|
||||
\end{align*}
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}
|
||||
"beta" stable revision
|
||||
\begin{align*}
|
||||
S(o)(x, y)_2 \define \minLattice_{\lte}(\fixpointsOf(o(x, \cdot)) \setminus ((y \downclosure) \setminus (x \upclosure)))
|
||||
\end{align*}
|
||||
\end{definition}
|
||||
|
||||
|
||||
\begin{theorem}
|
||||
For an extra consistent \Ndao $o$, regular stable revision is equivalent to beta stable revision
|
||||
\end{theorem}
|
||||
|
||||
\begin{example}
|
||||
SHowing without ultra consistency
|
||||
\begin{align*}
|
||||
o(x, y) \define (\{ \bot \}, \{ \bot \})
|
||||
\end{align*}
|
||||
below properties don't hold
|
||||
\end{example}
|
||||
|
||||
\begin{proposition}\label{prop:ultra-consistency}
|
||||
Works fo rdouble sided ordering
|
||||
Given \AnNdaoO $o: \LL^2 \rightarrow \powersetO(\L)^2$ that is \Monotone from $\lte_p^2$ to $<_p^2$,\ we have for any consistent pair $(x, y) \in \LL^2$,
|
||||
\begin{align*}
|
||||
o(x, y) \lte_p^2 (o(x, y)_2, o(x, y)_1)
|
||||
\end{align*}
|
||||
\end{proposition}
|
||||
|
||||
\begin{lemma}
|
||||
This probably needs double sides :()
|
||||
Given an \Ndao $o$, if $y$ is a \Prefixpoint of $o(x, \cdot)_2$, then for some $y' \in o(x, \cdot)_2$, we have
|
||||
$x \lte y' \lte y$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
begin
|
||||
\end{proof}
|
||||
|
||||
|
||||
% iven an \gls{ndao} $o$, its {\em $\beta$-n-stable fixpoints} are fixpoints of the following
|
||||
% \begin{align*}
|
||||
% B^o_{high}(x) &\define \{ a ~|~ a \in o({x}, a), \neg \exists a',
|
||||
% \\ &\hspace{1.5cm}(\boxed{x \preceq_{}}~ a' \prec_{} a) \land (a' \in o({x}, a))) \}\\
|
||||
% S(o)(x, y) &\define (C^{o}_{low}(y), B^{o}_{high}(x))
|
||||
% \end{align*}}
|
||||
|
||||
% \newcommand{\betastablefixpoint}{\hyperlink{glossary:betastablefixpoint}{$\beta$-stable fixpoint}}
|
||||
% \newglossaryentry{betastablefixpoint}{
|
||||
% name={$\beta$-stable fixpoint},
|
||||
% description={
|
||||
% An \gls{interpretation} $(T, P)$ is a {\em $\alpha$-stable fixpoint} (or a $\beta$-stable fixpoint) if it is a \gls{fixpoint} of some $h \in H$ and for each $h' \in H$, none of the following hold
|
||||
% \begin{enumerate}[(i.)]
|
||||
% \item $\stablerevisionoperator(h')(T, P)_1 \prec_{} T$,
|
||||
% \item ($\alpha$-stable only)~$\stablerevisionoperator(h')(T, P)_2 \prec_{} P$, nor
|
||||
% \item ($\beta$-stable only) $\exists Z \in \L, T \preceq_{} (h'(T, Z)_2 = Z) \prec_{} P$
|
||||
% \end{enumerate}
|
||||
% }}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\bibliographystyle{plain}
|
||||
\bibliography{../references}
|
||||
|
||||
\end{document}
|
36
glossary.tex
36
glossary.tex
|
@ -1,21 +1,45 @@
|
|||
\newcommand{\definition}[2]{\hypertarget{glossary:#1}{#2}}
|
||||
\newcommand{\definitionBody}[2]{\hypertarget{glossary:#1}{#2}}
|
||||
\newcommand{\definitionLink}[2]{\hyperlink{glossary:#1}{#2}\xspace}
|
||||
|
||||
|
||||
\newcommand{\Monotone}{\definitionLink{monotone}{monotone}}
|
||||
\newcommand{\Image}{\definitionLink{image}{monotone}}
|
||||
\let\imageNoLink\image
|
||||
\let\imageNoLink\image{}
|
||||
\renewcommand{\image}[1]{\imageNoLink{#1}}
|
||||
\let\lubNoLink\lub
|
||||
\let\lubNoLink\lub{}
|
||||
\renewcommand{\lub}{\definitionLink{lubglb}{\lubNoLink}}
|
||||
\let\glbNoLink\glb
|
||||
\let\glbNoLink\glb{}
|
||||
\renewcommand{\glb}{\definitionLink{lubglb}{\glbNoLink}}
|
||||
\newcommand{\CompleteLattice}{\definitionLink{completelattice}{complete lattice}}
|
||||
\let\LLNoLink\LL{}
|
||||
\renewcommand{\LL}{\definitionLink{completelattice}{\LLNoLink}}
|
||||
|
||||
\let\topNoLink\top
|
||||
\let\topNoLink\top{}
|
||||
\renewcommand{\top}{\definitionLink{topbot}{\topNoLink}}
|
||||
\let\botNoLink\bot
|
||||
\let\botNoLink\bot{}
|
||||
\renewcommand{\bot}{\definitionLink{topbot}{\botNoLink}}
|
||||
|
||||
\let\fixpointsOfNoLink\fixpointsOf{}
|
||||
\renewcommand{\fixpointsOf}{\definitionLink{fixpointsOf}{\fixpointsOfNoLink}}
|
||||
|
||||
\let\powersetNoLink\powerset{}
|
||||
\renewcommand{\powerset}{\definitionLink{powerset}{\powersetNoLink}}
|
||||
\let\powersetONoLink\powersetO{}
|
||||
\renewcommand{\powersetO}{\definitionLink{powerset}{\powersetONoLink}}
|
||||
|
||||
\newcommand{\Poset}{\definitionLink{poset}{poset}}
|
||||
\let\lteNoLink\lte{}
|
||||
\renewcommand{\lte}{\definitionLink{poset}{\lteNoLink}}
|
||||
\let\lteSubNoLink\lteSub{}
|
||||
\renewcommand{\lteSub}[1]{\definitionLink{poset}{\lteSubNoLink{#1}}}
|
||||
|
||||
|
||||
\newcommand{\Ndao}{\definitionLink{ndao}{ndao}}
|
||||
\newcommand{\AnNdao}{an \definitionLink{ndao}{ndao}}
|
||||
\newcommand{\AnNdaoO}{An \definitionLink{ndao}{ndao}}
|
||||
\newcommand{\Interpretation}{\definitionLink{interpretation}{interpretation}}
|
||||
|
||||
\newcommand{\Prefixpoint}{\definitionLink{prefixpoint}{prefixpoint}}
|
||||
|
||||
\newcommand{\minLattice}{\bm{min}}
|
||||
\newcommand{\maxLattice}{\bm{max}}
|
|
@ -1,8 +1,13 @@
|
|||
\newcommand{\fixpointsOf}{\textbf{\textit{fix}}}
|
||||
\renewcommand{\L}{\mathcal{L}}
|
||||
\newcommand{\LL}{\mathcal{L}}
|
||||
\newcommand{\lte}{\preceq}
|
||||
\newcommand{\lteSub}[1]{\lteNoLink_{#1}}
|
||||
\newcommand{\image}[1]{[#1]}
|
||||
\newcommand{\define}{\coloneqq}
|
||||
\newcommand{\union}{\cup}
|
||||
\newcommand{\glb}{\bigwedge}
|
||||
\newcommand{\lub}{\bigvee}
|
||||
\newcommand{\powerset}{\wp}
|
||||
\newcommand{\powersetO}{\wp^o}
|
||||
\newcommand{\upclosure}{\uparrow}
|
||||
\newcommand{\downclosure}{\downarrow}
|
||||
|
|
2
note.out
2
note.out
|
@ -0,0 +1,2 @@
|
|||
\BOOKMARK [1][-]{section.1}{\376\377\000B\000a\000c\000k\000g\000r\000o\000u\000n\000d}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{\376\377\000C\000o\000n\000t\000e\000n\000t}{}% 2
|
20
note.tex
20
note.tex
|
@ -7,7 +7,14 @@
|
|||
\usepackage{amsthm}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{mathtools}
|
||||
\newcommand{\jh}[1]{{\leavevmode\color{blue!50!red}#1}}
|
||||
\usepackage{hyperref}
|
||||
\hypersetup{
|
||||
colorlinks=true,
|
||||
linkcolor=black,
|
||||
filecolor=black,
|
||||
urlcolor=black,
|
||||
pdfpagemode=FullScreen,
|
||||
}
|
||||
|
||||
\input{notation.tex}
|
||||
\input{glossary.tex}
|
||||
|
@ -23,18 +30,17 @@
|
|||
|
||||
% \maketitle
|
||||
|
||||
\definition{monotone}{define monotone}
|
||||
\definition{image}{define set image}
|
||||
\definition{lubglb}{define glb and lub}
|
||||
\definition{topbot}{define $\top$ and $\bot$}
|
||||
\definition{completelattice}{define complete lattice}
|
||||
|
||||
Hello world\cite{tarskilatticetheoretical1955}
|
||||
First, we generalize Knaster-Tarski Fixpoint Theorem.
|
||||
|
||||
$$\fixpointsOf(S)$$
|
||||
|
||||
|
||||
\section{Background}
|
||||
\input{sections/background.tex}
|
||||
|
||||
\section{Content}
|
||||
|
||||
\begin{theorem}[Tarski-Knaster Fixpoint Theorem~\cite{tarskilatticetheoretical1955}]\label{tarskitheorem}
|
||||
For a \Monotone function $o$ over a \CompleteLattice $\langle \L, \lte \rangle$, we have that $\langle \fixpointsOf(o), \lte \rangle$ is a \CompleteLattice.
|
||||
\end{theorem}
|
||||
|
|
|
@ -0,0 +1,13 @@
|
|||
|
||||
|
||||
|
||||
\definition{powerset}{Given a set $S$, we denote its powerset, i.e.\ $\{ x \subseteq S \}$ with $\powerset(S)$. We use $\powersetO(S)$ to denote the powerset of $S$ without the empty set.}
|
||||
\definition{poset}{
|
||||
We call $\langle S, \lte \rangle$ a {\em poset} (a partially ordered set) if $\lte$ is reflexive, transitive and antisymmetric.
|
||||
}
|
||||
\definition{lubglb}{An element is an {\em upper or lower bound} of a subset $S$ of a \Poset if it is greater than or equal or less than or equal, respectively, to every element inside $S$.}
|
||||
\definition{completelattice}{A {\em complete lattice} is a \Poset $\langle \LL, \lte \rangle$ s.t.\ every subset $S$ of $\LL$ has a unique greatest lower bound $\glb^{\LL} S$ and least upper bound $\lub^{\LL} S$}
|
||||
\definition{topbot}{We use $\top^{\LL}$ and $\bot^{\LL}$ to denote $\lub^{\LL} \LL$ and $\glb^{\LL} \LL$ respectively.}
|
||||
\definition{monotone}{A function $f: A \rightarrow B$ is {\em monotone} w.r.t. the orderings $\langle A, \lteSub{A} \rangle$ and $\langle B, \lteSub{B} \rangle$ if for all $a_1, a_2 \in A$, $a_1 \lte a_2$ implies $f(a_1) \lte f(a_2)$}
|
||||
\definition{image}{Given a function $f: A \rightarrow B$, we use $f[A]$ to denote the {\em image of $f$} w.r.t.\ $A$, i.e.\ the set $\{ f(a) ~|~ a \in A \} \subseteq B$.
|
||||
With abuse to notation, when given a set of functions $F$, we write $\bigcup \{ f\image{A} ~|~ f \in F \}$ as $F\image{A}$.}
|
Loading…
Reference in New Issue