This commit is contained in:
parent
2e8a1dec2f
commit
6b716c75a1
|
@ -0,0 +1,24 @@
|
|||
- Demo doing graph colouring program
|
||||
- Explain graph colouring
|
||||
- Goal is to learn how to learn
|
||||
- Manual too
|
||||
- Small examples
|
||||
- Hypothesize and test
|
||||
- No one "right" way to model a problem
|
||||
- Less complicated is generally better
|
||||
- First: direct example (color_prim.lp)
|
||||
- Show basic grounding
|
||||
- Uncomment vertex: we're missing some
|
||||
- Uncomment arc to make the graph symmetric (undirected)
|
||||
|
||||
- Show basic solving and disjunctive rule
|
||||
- Ground it first.
|
||||
- We have dupes
|
||||
- Ferry problem
|
||||
- Explain time
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
CLPFD
|
6
asp/1.lp
6
asp/1.lp
|
@ -1,6 +0,0 @@
|
|||
% Graph colouring
|
||||
|
||||
%#show color/2.
|
||||
|
||||
%{ color(X,1..n) } = 1 :- vertex(X).
|
||||
%:- arc(X,Y), color(X,C), color(Y,C).
|
|
@ -0,0 +1,27 @@
|
|||
:- use_module(library(clpfd)).
|
||||
|
||||
vertex(1).
|
||||
vertex(2).
|
||||
vertex(3).
|
||||
link(1, 2).
|
||||
link(1, 3).
|
||||
link(2, 3).
|
||||
|
||||
arc(X, Y) :- link(X, Y).
|
||||
arc(X, Y) :- link(Y, X).
|
||||
|
||||
coloring(Colors) :-
|
||||
findall(V, vertex(V), Vertices),
|
||||
length(Vertices, N),
|
||||
same_length(Colors, Vertices),
|
||||
Colors ins 0..N, % At most N different colors
|
||||
maplist(constrain1(Vertices, Colors), Vertices, Colors),
|
||||
sum(Colors, #=, Sum),
|
||||
labeling([min(Sum)], [Sum | Colors]).
|
||||
|
||||
constrain1(Vertices, Colors, Vertex, Color) :-
|
||||
maplist(constrain2(Vertex, Color), Vertices, Colors).
|
||||
constrain2(V1, C1, V2, C2) :-
|
||||
arc(V1, V2), !,
|
||||
C1 #\= C2.
|
||||
constrain2(_, _, _, _).
|
|
@ -0,0 +1,34 @@
|
|||
arc(1, (2; 3)).
|
||||
arc(2, 3).
|
||||
|
||||
% Collect the vertices
|
||||
vertex(X) :- arc(X, _).
|
||||
|
||||
% Symmetry (undirected graph)
|
||||
arc(X, Y) :- arc(Y, X).
|
||||
|
||||
% Representation 1:
|
||||
% #show red/1. #show green/1. #show blue/1.
|
||||
% red(Vertex), green(Vertex), blue(Vertex) :- vertex(Vertex).
|
||||
% % Remove the dupes
|
||||
% :- red(V1), red(V2), V1 != V2.
|
||||
% :- green(V1), green(V2), V1 != V2.
|
||||
% :- blue(V1), blue(V2), V1 != V2.
|
||||
% Remove the adjacent edges with same color
|
||||
% :- arc(X, Y), red(X), red(Y).
|
||||
% :- arc(X, Y), green(X), green(Y).
|
||||
% :- arc(X, Y), blue(X), blue(Y).
|
||||
|
||||
|
||||
% Representation 2:
|
||||
% #const n = 6.
|
||||
|
||||
% #show color/2.
|
||||
|
||||
% { color(X,1..n) } = 1 :- vertex(X).
|
||||
% :- arc(X,Y), color(X,C), color(Y,C).
|
||||
|
||||
|
||||
|
||||
% Representation 3:
|
||||
% TODO don't need to give it an n
|
|
@ -0,0 +1,144 @@
|
|||
% Initially, there are cars at various locations, and there is a
|
||||
% ferry at some location. The ferry can only transport one car at
|
||||
% a time and the goal is to transport all cars to their
|
||||
% destinations. No paralell actions are allowed.
|
||||
|
||||
#show board/3.
|
||||
#show move/4.
|
||||
#show unboard/3.
|
||||
%#show at/3.
|
||||
%#show in/3.
|
||||
%#show moving/3.
|
||||
|
||||
|
||||
time(0..steps).
|
||||
|
||||
% Clingo processes "safe programs": any variable occuring in a
|
||||
% negative literal of rule r must appear in a positive atom in the body of r.
|
||||
%
|
||||
% There is nothing wrong to use domains predicates. One may first write
|
||||
% these predicates and then comment the unnessary ones out (as shown).
|
||||
% Nothing wrong to leave them there.
|
||||
% Not all of them can be removed, specially when there is a possibility
|
||||
% a variable can be instantiated (during grounding) to something unintended.
|
||||
% You may discover this during debugging using the "#show" diretive.
|
||||
|
||||
|
||||
% actions
|
||||
{board(Car,Loc,T)} :-
|
||||
car(Car),
|
||||
% location(Loc), time(T),
|
||||
empty(ferry,T),
|
||||
at(Car,Loc,T),
|
||||
at(ferry,Loc,T),
|
||||
not moving(ferry,Loc,T),
|
||||
not goal(T).
|
||||
|
||||
{unboard(Car,Loc,T)} :-
|
||||
car(Car),
|
||||
% location(Loc), time(T),
|
||||
in(ferry,Car,T),
|
||||
at(ferry,Loc,T),
|
||||
not moving(ferry,Loc,T),
|
||||
not goal(T).
|
||||
|
||||
{move(ferry,From,To,T)} :-
|
||||
% car(Car),location(From), time(T),
|
||||
location(To),
|
||||
at(ferry,From,T),
|
||||
From != To,
|
||||
not goal(T).
|
||||
|
||||
moving(ferry,From,T):- % irrelevant of where ferry moves to
|
||||
% location(From),location(Loc), time(T),
|
||||
at(ferry,From,T),
|
||||
move(ferry,From,Loc,T).
|
||||
|
||||
% Below is the wrong code to define empty: it says if there exists
|
||||
% a Car not in ferry, then ferry is empty.
|
||||
%
|
||||
% empty(ferry,T):-
|
||||
% car(Car), time(T),
|
||||
% not in(ferry,Car,T).
|
||||
|
||||
empty(ferry,T):- time(T), not occupied(ferry,T).
|
||||
occupied(ferry,T) :- in(_,_,T).
|
||||
|
||||
|
||||
%fluents
|
||||
in(ferry,Car,T+1):- %an action causes a property to hold
|
||||
% car(Car), location(Loc), time(T),
|
||||
at(ferry,Loc,T),
|
||||
board(Car,Loc,T).
|
||||
|
||||
in(ferry,Car,T+1):-
|
||||
% car(Car),
|
||||
time(T),
|
||||
in(ferry,Car,T),
|
||||
not affected0(Car,T).
|
||||
|
||||
affected0(Car,T) :-
|
||||
% time(T), car(Car), location(Loc),
|
||||
unboard(Car,Loc,T).
|
||||
|
||||
% !!! Cannot replace the above by below - it says that
|
||||
% Car is in ferry at T+1 if at T there is a location Loc
|
||||
% s.t. Car is not unboarded - not intended!
|
||||
%
|
||||
% in(ferry,Car,T+1):-
|
||||
% car(Car), time(T),
|
||||
% in(ferry,Car,T),
|
||||
% not unboard(Car,Loc,T).
|
||||
|
||||
at(ferry,Loc,T+1):-
|
||||
% car(Car), location(Loc), time(T),
|
||||
at(ferry,Loc,T),
|
||||
board(Car,Loc,T).
|
||||
|
||||
at(ferry,Loc,T+1):-
|
||||
% car(Car), location(Loc), time(T),
|
||||
at(ferry,Loc,T),
|
||||
unboard(Car,Loc,T).
|
||||
|
||||
at(ferry,Loc,T+1):-
|
||||
% location(Loc),
|
||||
time(T),
|
||||
at(ferry,Loc,T), %if we don't have tis line, what could happen?
|
||||
%A: ferry can be everywhere
|
||||
not moving(ferry,Loc,T).
|
||||
|
||||
at(ferry,To,T+1):-
|
||||
% location(To),location(From),
|
||||
time(T),
|
||||
at(ferry,From,T),
|
||||
move(ferry,From,To,T).
|
||||
|
||||
at(Car,Loc,T+1):-
|
||||
car(Car), % not commented out - don't want Car instantied to ferry
|
||||
% location(Loc), time(T),
|
||||
unboard(Car,Loc,T).
|
||||
|
||||
at(Car,Loc,T+1):- %frame axiom
|
||||
car(Car), location(Loc), time(T),
|
||||
at(Car,Loc,T),
|
||||
not board(Car,Loc,T).
|
||||
|
||||
goal(T+1):- time(T), goal(T).
|
||||
%once goal is achieved, goal(T) is true for all T > k.
|
||||
|
||||
goal :- time(T), goal(T).
|
||||
:- not goal.
|
||||
|
||||
|
||||
% The code above works for the input file, ferryIn0.lp and ferryIn1.lp,
|
||||
% but not ferryIn2.lp.
|
||||
%
|
||||
% Discover what is wrong. Consider adding the following constraints:
|
||||
%
|
||||
% 1. ferry cannot be moved to two different locations at the same time
|
||||
% 2. it's not possible to board different cars at the same time and same location.
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue