Add examples
This commit is contained in:
parent
bcc9d79d34
commit
48e2bb8a20
6
AST.py
6
AST.py
|
@ -62,7 +62,7 @@ class OBinary(OFormula):
|
|||
right: OFormula
|
||||
|
||||
def text(self):
|
||||
return f"{self.left.text()} {self.operator} {self.right.text()}"
|
||||
return f"({self.left.text()} {self.operator} {self.right.text()})"
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -100,8 +100,8 @@ class HMKNFVisitor(ParseTreeVisitor):
|
|||
self.oatoms = set()
|
||||
|
||||
def visitKb(self, ctx: HMKNFParser.KbContext):
|
||||
orules = (self.visit(orule) for orule in ctx.orule()) if ctx.orule() else ()
|
||||
ont = reduce(partial(OBinary, "&"), orules, OConst.TRUE)
|
||||
orules = (self.visit(orule) for orule in ctx.orule()) if ctx.orule() else (OConst.TRUE,)
|
||||
ont = reduce(partial(OBinary, "&"), orules)
|
||||
lrules = tuple(self.visit(lrule) for lrule in ctx.lrule())
|
||||
return KB(ont, lrules, Set(self.katoms), Set(self.oatoms))
|
||||
|
||||
|
|
24
aft.py
24
aft.py
|
@ -10,7 +10,7 @@ usage: python aft.py < knowledge_bases/simple.hmknf
|
|||
from sys import stdin, flags, argv
|
||||
from AST import KB, Set, atom, loadProgram
|
||||
from hmknf import objective_knowledge
|
||||
from util import printp
|
||||
from util import format_set, printp, textp
|
||||
|
||||
Kinterp = tuple[Set[atom], Set[atom]]
|
||||
|
||||
|
@ -21,14 +21,14 @@ def add_immediate_XY(kb: KB, X: Set[atom], Y: Set[atom]) -> Set[atom]:
|
|||
When they are flipped, i.e. X = P, and Y = T, then it computes what is "possibly true"
|
||||
This function is monotone w.r.t. the precision ordering
|
||||
"""
|
||||
_, X, _ = objective_knowledge(kb, X, Set())
|
||||
_, newX, _ = objective_knowledge(kb, X, Set())
|
||||
for rule in kb.rules:
|
||||
if not X.issuperset(rule.pbody):
|
||||
continue
|
||||
if Y.intersection(rule.nbody):
|
||||
continue
|
||||
X = X.union({rule.head[0]})
|
||||
return X
|
||||
newX = newX.union({rule.head[0]})
|
||||
return newX
|
||||
|
||||
|
||||
def extract_OBT_entails_false(kb: KB, T: Set[atom]):
|
||||
|
@ -59,11 +59,15 @@ def fixpoint(op, initial):
|
|||
return prev
|
||||
|
||||
|
||||
def stable_revision(kb: KB, T: Set[atom], P: Set[atom]):
|
||||
def stable_revision(kb: KB, T: Set[atom], P: Set[atom], debug=False):
|
||||
def left(T):
|
||||
if debug:
|
||||
print("left:", format_set(T))
|
||||
return add_immediate_XY(kb, T, P)
|
||||
|
||||
def right(P):
|
||||
if debug:
|
||||
print("right:", format_set(P))
|
||||
return add_immediate_XY(kb, P, T) - extract_OBT_entails_false(kb, T)
|
||||
|
||||
return (
|
||||
|
@ -73,9 +77,14 @@ def stable_revision(kb: KB, T: Set[atom], P: Set[atom]):
|
|||
|
||||
|
||||
def stable_revision_extend(kb: KB, initialT: Set[atom], initialP: Set[atom]):
|
||||
i = -1
|
||||
|
||||
def stable_revision_tuple(TP: Kinterp) -> Kinterp:
|
||||
nonlocal i
|
||||
i += 1
|
||||
T, P = TP
|
||||
return stable_revision(kb, T, P)
|
||||
print(f"{i}:", textp(T, P))
|
||||
return stable_revision(kb, T, P, True)
|
||||
|
||||
return fixpoint(stable_revision_tuple, (initialT, initialP))
|
||||
|
||||
|
@ -83,7 +92,6 @@ def stable_revision_extend(kb: KB, initialT: Set[atom], initialP: Set[atom]):
|
|||
def least_stable_fixedpoint(kb: KB):
|
||||
return stable_revision_extend(kb, Set(), kb.katoms)
|
||||
|
||||
|
||||
def main():
|
||||
""""""
|
||||
if len(argv) > 1:
|
||||
|
@ -92,7 +100,7 @@ def main():
|
|||
in_file = stdin
|
||||
kb = loadProgram(in_file.read())
|
||||
T, P = least_stable_fixedpoint(kb)
|
||||
printp(T, P)
|
||||
print("fixpoint:", textp(T, P))
|
||||
|
||||
|
||||
if __name__ == "__main__" and not flags.interactive:
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
This is BibTeX, Version 0.99d (TeX Live 2022/dev/Debian)
|
||||
This is BibTeX, Version 0.99d (TeX Live 2022/Debian)
|
||||
Capacity: max_strings=200000, hash_size=200000, hash_prime=170003
|
||||
The top-level auxiliary file: document.aux
|
||||
The style file: plain.bst
|
||||
|
|
|
@ -0,0 +1,7 @@
|
|||
\BOOKMARK [1][-]{section.1}{\376\377\000A\000n\000\040\000A\000p\000p\000r\000o\000x\000i\000m\000a\000t\000o\000r\000\040\000H\000y\000b\000r\000i\000d\000\040\000M\000K\000N\000F\000\040\000k\000n\000o\000w\000l\000e\000d\000g\000e\000\040\000b\000a\000s\000e\000s}{}% 1
|
||||
\BOOKMARK [1][-]{appendix.A}{\376\377\000L\000a\000t\000t\000i\000c\000e\000\040\000T\000h\000e\000o\000r\000y}{}% 2
|
||||
\BOOKMARK [1][-]{appendix.B}{\376\377\000P\000a\000r\000t\000i\000a\000l\000\040\000S\000t\000a\000b\000l\000e\000\040\000M\000o\000d\000e\000l\000\040\000S\000e\000m\000a\000n\000t\000i\000c\000s}{}% 3
|
||||
\BOOKMARK [2][-]{subsection.B.1}{\376\377\000F\000i\000x\000p\000o\000i\000n\000t\000\040\000O\000p\000e\000r\000a\000t\000o\000r\000s}{appendix.B}% 4
|
||||
\BOOKMARK [1][-]{appendix.C}{\376\377\000A\000p\000p\000r\000o\000x\000i\000m\000a\000t\000i\000o\000n\000\040\000F\000i\000x\000p\000o\000i\000n\000t\000\040\000T\000h\000e\000o\000r\000y}{}% 5
|
||||
\BOOKMARK [1][-]{appendix.D}{\376\377\000H\000y\000b\000r\000i\000d\000\040\000M\000K\000N\000F\000\040\000K\000n\000o\000w\000l\000e\000d\000g\000e\000\040\000B\000a\000s\000e\000s}{}% 6
|
||||
\BOOKMARK [2][-]{subsection.D.1}{\376\377\000A\000n\000\040\000E\000x\000a\000m\000p\000l\000e\000\040\000K\000n\000o\000w\000l\000e\000d\000g\000e\000\040\000B\000a\000s\000e}{appendix.D}% 7
|
|
@ -1,6 +1,7 @@
|
|||
\documentclass{article}
|
||||
|
||||
\usepackage{natbib}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\input{common}
|
||||
|
||||
|
@ -14,6 +15,20 @@
|
|||
|
||||
\section{An Approximator Hybrid MKNF knowledge bases}
|
||||
|
||||
A program $\P$ is a set of (normal) rules. An ontology $\OO$ is a first-order formula.
|
||||
\begin{definition}
|
||||
Given a set of atoms $S$ and an atom $a$. We use $\OBO{S}$ to denote the first-order formula obtained by extending $\OO$ with every atom from $S$ fixed to be true. The relation
|
||||
\begin{align*}
|
||||
\OBO{S} \models a
|
||||
\end{align*}
|
||||
Holds if either
|
||||
\begin{itemize}
|
||||
\item there is no satisfying assignment for $\OBO{S}$ (The principle of explosion)
|
||||
\item for every satisfying assignment for $\OBO{S}$, $a$ is true, $\OBO{S}$ is logically equivalent to $\OBO{S \union \{ a\}}$
|
||||
\end{itemize}
|
||||
Holds if when we fix every atom in $S$ to be true with
|
||||
\end{definition}
|
||||
|
||||
The lattice $\langle \L^2, \preceq_p \rangle$
|
||||
|
||||
\begin{align*}
|
||||
|
@ -26,6 +41,16 @@ The lattice $\langle \L^2, \preceq_p \rangle$
|
|||
S(\Phi)(T, P) \define \Bigl( \lfp~\Gamma(\cdot, P),~ \lfp\,\Bigl( \Gamma(\cdot, T) \setminus extract(T) \Bigr) \Bigr)
|
||||
\end{align*}
|
||||
|
||||
\begin{definition}
|
||||
A (hybrid MKNF) knowledge base $\KB = (\OO, \P)$ is a program $\P$ and an ontology $\OO$\footnote{See \Section{section-prelim-hmknf} for a formal definition}
|
||||
An interpretation $(T, P)$\footnote{See \Section{psms} for definition of interpretations} is an MKNF model of $\KB$ if
|
||||
\begin{itemize}
|
||||
\item $T \subseteq P$
|
||||
\item $\OBO{P}$ is consistent, i.e., $\OBO{P} \not\models \bot$ (It follows that $\OBO{T} \not\models \bot$)
|
||||
\item All the rules are satisfied, $\lfp~{\Gamma(\cdot, T)} = P$.
|
||||
\end{itemize}
|
||||
\end{definition}
|
||||
|
||||
\appendix
|
||||
|
||||
\section{Lattice Theory}
|
||||
|
@ -59,7 +84,7 @@ The lattice $\langle \L^2, \preceq_p \rangle$
|
|||
\end{definition}
|
||||
|
||||
|
||||
\section{Partial Stable Model Semantics}
|
||||
\section{Partial Stable Model Semantics}\label{psms}
|
||||
|
||||
\begin{definition}
|
||||
A (ground and normal) {\em answer set program} $\P$ is a set of rules where each rule $r$ is of the form
|
||||
|
|
|
@ -1,3 +0,0 @@
|
|||
-b.
|
||||
a :- not b.
|
||||
b :- not a.
|
|
@ -1,4 +0,0 @@
|
|||
:- c.
|
||||
:- b.
|
||||
:- a.
|
||||
a.
|
|
@ -0,0 +1,8 @@
|
|||
# Simple two valued model
|
||||
# oatoms vs katoms
|
||||
|
||||
|
||||
(-a | c) & d.
|
||||
|
||||
a :- not b.
|
||||
c :- c.
|
|
@ -0,0 +1,4 @@
|
|||
# KB has a WFM and 2, 2-valued models
|
||||
|
||||
a :- not b.
|
||||
b :- not a.
|
|
@ -0,0 +1,6 @@
|
|||
# KB has no WFM
|
||||
|
||||
-a | -b.
|
||||
|
||||
a :- not b.
|
||||
b :- not a.
|
|
@ -0,0 +1,8 @@
|
|||
# Interleaved positive inferences with ontology and program
|
||||
|
||||
(a -> b) & (d -> e).
|
||||
|
||||
a.
|
||||
c :- b.
|
||||
d :- c.
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
# Generate some undefined atoms
|
||||
|
||||
a :- not a'.
|
||||
a' :- not a.
|
||||
|
||||
:- a'.
|
||||
|
||||
|
||||
b.
|
||||
b :- a.
|
|
@ -0,0 +1,5 @@
|
|||
# Ontology collapses "choice"
|
||||
|
||||
-b.
|
||||
a :- not b.
|
||||
b :- not a.
|
|
@ -14,6 +14,7 @@ from more_itertools import peekable
|
|||
|
||||
from AST import loadProgram, atom, Set, KB
|
||||
from aft import Kinterp, add_immediate_XY, fixpoint, stable_revision
|
||||
from hmknf import oformula_sat
|
||||
from util import printp, powerset
|
||||
|
||||
|
||||
|
@ -34,7 +35,7 @@ def verify(kb: KB, T: Set[atom], P: Set[atom]) -> bool:
|
|||
def check_rules(P: Set[atom]):
|
||||
return add_immediate_XY(kb, P, T)
|
||||
|
||||
return fixpoint(check_rules, Set()) == P
|
||||
return oformula_sat(kb.ont, P) and fixpoint(check_rules, Set()) == P
|
||||
|
||||
|
||||
def main():
|
||||
|
|
9
util.py
9
util.py
|
@ -2,6 +2,7 @@ from functools import wraps
|
|||
from AST import Set, atom
|
||||
import more_itertools
|
||||
|
||||
|
||||
def powerset(items):
|
||||
return map(Set, more_itertools.powerset(items))
|
||||
|
||||
|
@ -10,12 +11,16 @@ def format_set(s: Set[atom]):
|
|||
return "{" + ", ".join(sorted(s)) + "}"
|
||||
|
||||
|
||||
def printp(*args):
|
||||
def textp(*args):
|
||||
whole = "("
|
||||
sets = (format_set(arg) for arg in args)
|
||||
whole += ", ".join(sets)
|
||||
whole += ")"
|
||||
print(whole)
|
||||
return whole
|
||||
|
||||
|
||||
def printp(*args):
|
||||
print(textp(*args))
|
||||
|
||||
|
||||
def prints_input(*pos):
|
||||
|
|
Loading…
Reference in New Issue