Add examples

This commit is contained in:
Spencer Killen 2023-05-25 14:37:24 -06:00
parent bcc9d79d34
commit 48e2bb8a20
Signed by: sjkillen
GPG Key ID: 2FDD7376F031D45B
15 changed files with 105 additions and 25 deletions

6
AST.py
View File

@ -62,7 +62,7 @@ class OBinary(OFormula):
right: OFormula right: OFormula
def text(self): def text(self):
return f"{self.left.text()} {self.operator} {self.right.text()}" return f"({self.left.text()} {self.operator} {self.right.text()})"
@dataclass @dataclass
@ -100,8 +100,8 @@ class HMKNFVisitor(ParseTreeVisitor):
self.oatoms = set() self.oatoms = set()
def visitKb(self, ctx: HMKNFParser.KbContext): def visitKb(self, ctx: HMKNFParser.KbContext):
orules = (self.visit(orule) for orule in ctx.orule()) if ctx.orule() else () orules = (self.visit(orule) for orule in ctx.orule()) if ctx.orule() else (OConst.TRUE,)
ont = reduce(partial(OBinary, "&"), orules, OConst.TRUE) ont = reduce(partial(OBinary, "&"), orules)
lrules = tuple(self.visit(lrule) for lrule in ctx.lrule()) lrules = tuple(self.visit(lrule) for lrule in ctx.lrule())
return KB(ont, lrules, Set(self.katoms), Set(self.oatoms)) return KB(ont, lrules, Set(self.katoms), Set(self.oatoms))

24
aft.py
View File

@ -10,7 +10,7 @@ usage: python aft.py < knowledge_bases/simple.hmknf
from sys import stdin, flags, argv from sys import stdin, flags, argv
from AST import KB, Set, atom, loadProgram from AST import KB, Set, atom, loadProgram
from hmknf import objective_knowledge from hmknf import objective_knowledge
from util import printp from util import format_set, printp, textp
Kinterp = tuple[Set[atom], Set[atom]] Kinterp = tuple[Set[atom], Set[atom]]
@ -21,14 +21,14 @@ def add_immediate_XY(kb: KB, X: Set[atom], Y: Set[atom]) -> Set[atom]:
When they are flipped, i.e. X = P, and Y = T, then it computes what is "possibly true" When they are flipped, i.e. X = P, and Y = T, then it computes what is "possibly true"
This function is monotone w.r.t. the precision ordering This function is monotone w.r.t. the precision ordering
""" """
_, X, _ = objective_knowledge(kb, X, Set()) _, newX, _ = objective_knowledge(kb, X, Set())
for rule in kb.rules: for rule in kb.rules:
if not X.issuperset(rule.pbody): if not X.issuperset(rule.pbody):
continue continue
if Y.intersection(rule.nbody): if Y.intersection(rule.nbody):
continue continue
X = X.union({rule.head[0]}) newX = newX.union({rule.head[0]})
return X return newX
def extract_OBT_entails_false(kb: KB, T: Set[atom]): def extract_OBT_entails_false(kb: KB, T: Set[atom]):
@ -59,11 +59,15 @@ def fixpoint(op, initial):
return prev return prev
def stable_revision(kb: KB, T: Set[atom], P: Set[atom]): def stable_revision(kb: KB, T: Set[atom], P: Set[atom], debug=False):
def left(T): def left(T):
if debug:
print("left:", format_set(T))
return add_immediate_XY(kb, T, P) return add_immediate_XY(kb, T, P)
def right(P): def right(P):
if debug:
print("right:", format_set(P))
return add_immediate_XY(kb, P, T) - extract_OBT_entails_false(kb, T) return add_immediate_XY(kb, P, T) - extract_OBT_entails_false(kb, T)
return ( return (
@ -73,9 +77,14 @@ def stable_revision(kb: KB, T: Set[atom], P: Set[atom]):
def stable_revision_extend(kb: KB, initialT: Set[atom], initialP: Set[atom]): def stable_revision_extend(kb: KB, initialT: Set[atom], initialP: Set[atom]):
i = -1
def stable_revision_tuple(TP: Kinterp) -> Kinterp: def stable_revision_tuple(TP: Kinterp) -> Kinterp:
nonlocal i
i += 1
T, P = TP T, P = TP
return stable_revision(kb, T, P) print(f"{i}:", textp(T, P))
return stable_revision(kb, T, P, True)
return fixpoint(stable_revision_tuple, (initialT, initialP)) return fixpoint(stable_revision_tuple, (initialT, initialP))
@ -83,7 +92,6 @@ def stable_revision_extend(kb: KB, initialT: Set[atom], initialP: Set[atom]):
def least_stable_fixedpoint(kb: KB): def least_stable_fixedpoint(kb: KB):
return stable_revision_extend(kb, Set(), kb.katoms) return stable_revision_extend(kb, Set(), kb.katoms)
def main(): def main():
"""""" """"""
if len(argv) > 1: if len(argv) > 1:
@ -92,7 +100,7 @@ def main():
in_file = stdin in_file = stdin
kb = loadProgram(in_file.read()) kb = loadProgram(in_file.read())
T, P = least_stable_fixedpoint(kb) T, P = least_stable_fixedpoint(kb)
printp(T, P) print("fixpoint:", textp(T, P))
if __name__ == "__main__" and not flags.interactive: if __name__ == "__main__" and not flags.interactive:

View File

@ -1,4 +1,4 @@
This is BibTeX, Version 0.99d (TeX Live 2022/dev/Debian) This is BibTeX, Version 0.99d (TeX Live 2022/Debian)
Capacity: max_strings=200000, hash_size=200000, hash_prime=170003 Capacity: max_strings=200000, hash_size=200000, hash_prime=170003
The top-level auxiliary file: document.aux The top-level auxiliary file: document.aux
The style file: plain.bst The style file: plain.bst

7
document/document.out Normal file
View File

@ -0,0 +1,7 @@
\BOOKMARK [1][-]{section.1}{\376\377\000A\000n\000\040\000A\000p\000p\000r\000o\000x\000i\000m\000a\000t\000o\000r\000\040\000H\000y\000b\000r\000i\000d\000\040\000M\000K\000N\000F\000\040\000k\000n\000o\000w\000l\000e\000d\000g\000e\000\040\000b\000a\000s\000e\000s}{}% 1
\BOOKMARK [1][-]{appendix.A}{\376\377\000L\000a\000t\000t\000i\000c\000e\000\040\000T\000h\000e\000o\000r\000y}{}% 2
\BOOKMARK [1][-]{appendix.B}{\376\377\000P\000a\000r\000t\000i\000a\000l\000\040\000S\000t\000a\000b\000l\000e\000\040\000M\000o\000d\000e\000l\000\040\000S\000e\000m\000a\000n\000t\000i\000c\000s}{}% 3
\BOOKMARK [2][-]{subsection.B.1}{\376\377\000F\000i\000x\000p\000o\000i\000n\000t\000\040\000O\000p\000e\000r\000a\000t\000o\000r\000s}{appendix.B}% 4
\BOOKMARK [1][-]{appendix.C}{\376\377\000A\000p\000p\000r\000o\000x\000i\000m\000a\000t\000i\000o\000n\000\040\000F\000i\000x\000p\000o\000i\000n\000t\000\040\000T\000h\000e\000o\000r\000y}{}% 5
\BOOKMARK [1][-]{appendix.D}{\376\377\000H\000y\000b\000r\000i\000d\000\040\000M\000K\000N\000F\000\040\000K\000n\000o\000w\000l\000e\000d\000g\000e\000\040\000B\000a\000s\000e\000s}{}% 6
\BOOKMARK [2][-]{subsection.D.1}{\376\377\000A\000n\000\040\000E\000x\000a\000m\000p\000l\000e\000\040\000K\000n\000o\000w\000l\000e\000d\000g\000e\000\040\000B\000a\000s\000e}{appendix.D}% 7

View File

@ -1,6 +1,7 @@
\documentclass{article} \documentclass{article}
\usepackage{natbib} \usepackage{natbib}
\usepackage{hyperref}
\input{common} \input{common}
@ -14,6 +15,20 @@
\section{An Approximator Hybrid MKNF knowledge bases} \section{An Approximator Hybrid MKNF knowledge bases}
A program $\P$ is a set of (normal) rules. An ontology $\OO$ is a first-order formula.
\begin{definition}
Given a set of atoms $S$ and an atom $a$. We use $\OBO{S}$ to denote the first-order formula obtained by extending $\OO$ with every atom from $S$ fixed to be true. The relation
\begin{align*}
\OBO{S} \models a
\end{align*}
Holds if either
\begin{itemize}
\item there is no satisfying assignment for $\OBO{S}$ (The principle of explosion)
\item for every satisfying assignment for $\OBO{S}$, $a$ is true, $\OBO{S}$ is logically equivalent to $\OBO{S \union \{ a\}}$
\end{itemize}
Holds if when we fix every atom in $S$ to be true with
\end{definition}
The lattice $\langle \L^2, \preceq_p \rangle$ The lattice $\langle \L^2, \preceq_p \rangle$
\begin{align*} \begin{align*}
@ -26,6 +41,16 @@ The lattice $\langle \L^2, \preceq_p \rangle$
S(\Phi)(T, P) \define \Bigl( \lfp~\Gamma(\cdot, P),~ \lfp\,\Bigl( \Gamma(\cdot, T) \setminus extract(T) \Bigr) \Bigr) S(\Phi)(T, P) \define \Bigl( \lfp~\Gamma(\cdot, P),~ \lfp\,\Bigl( \Gamma(\cdot, T) \setminus extract(T) \Bigr) \Bigr)
\end{align*} \end{align*}
\begin{definition}
A (hybrid MKNF) knowledge base $\KB = (\OO, \P)$ is a program $\P$ and an ontology $\OO$\footnote{See \Section{section-prelim-hmknf} for a formal definition}
An interpretation $(T, P)$\footnote{See \Section{psms} for definition of interpretations} is an MKNF model of $\KB$ if
\begin{itemize}
\item $T \subseteq P$
\item $\OBO{P}$ is consistent, i.e., $\OBO{P} \not\models \bot$ (It follows that $\OBO{T} \not\models \bot$)
\item All the rules are satisfied, $\lfp~{\Gamma(\cdot, T)} = P$.
\end{itemize}
\end{definition}
\appendix \appendix
\section{Lattice Theory} \section{Lattice Theory}
@ -59,7 +84,7 @@ The lattice $\langle \L^2, \preceq_p \rangle$
\end{definition} \end{definition}
\section{Partial Stable Model Semantics} \section{Partial Stable Model Semantics}\label{psms}
\begin{definition} \begin{definition}
A (ground and normal) {\em answer set program} $\P$ is a set of rules where each rule $r$ is of the form A (ground and normal) {\em answer set program} $\P$ is a set of rules where each rule $r$ is of the form

View File

@ -1,3 +0,0 @@
-b.
a :- not b.
b :- not a.

View File

@ -1,4 +0,0 @@
:- c.
:- b.
:- a.
a.

View File

@ -0,0 +1,8 @@
# Simple two valued model
# oatoms vs katoms
(-a | c) & d.
a :- not b.
c :- c.

View File

@ -0,0 +1,4 @@
# KB has a WFM and 2, 2-valued models
a :- not b.
b :- not a.

View File

@ -0,0 +1,6 @@
# KB has no WFM
-a | -b.
a :- not b.
b :- not a.

View File

@ -0,0 +1,8 @@
# Interleaved positive inferences with ontology and program
(a -> b) & (d -> e).
a.
c :- b.
d :- c.

10
knowledge_bases/sr2.hmknf Normal file
View File

@ -0,0 +1,10 @@
# Generate some undefined atoms
a :- not a'.
a' :- not a.
:- a'.
b.
b :- a.

View File

@ -0,0 +1,5 @@
# Ontology collapses "choice"
-b.
a :- not b.
b :- not a.

View File

@ -14,6 +14,7 @@ from more_itertools import peekable
from AST import loadProgram, atom, Set, KB from AST import loadProgram, atom, Set, KB
from aft import Kinterp, add_immediate_XY, fixpoint, stable_revision from aft import Kinterp, add_immediate_XY, fixpoint, stable_revision
from hmknf import oformula_sat
from util import printp, powerset from util import printp, powerset
@ -34,7 +35,7 @@ def verify(kb: KB, T: Set[atom], P: Set[atom]) -> bool:
def check_rules(P: Set[atom]): def check_rules(P: Set[atom]):
return add_immediate_XY(kb, P, T) return add_immediate_XY(kb, P, T)
return fixpoint(check_rules, Set()) == P return oformula_sat(kb.ont, P) and fixpoint(check_rules, Set()) == P
def main(): def main():

View File

@ -2,6 +2,7 @@ from functools import wraps
from AST import Set, atom from AST import Set, atom
import more_itertools import more_itertools
def powerset(items): def powerset(items):
return map(Set, more_itertools.powerset(items)) return map(Set, more_itertools.powerset(items))
@ -10,12 +11,16 @@ def format_set(s: Set[atom]):
return "{" + ", ".join(sorted(s)) + "}" return "{" + ", ".join(sorted(s)) + "}"
def printp(*args): def textp(*args):
whole = "(" whole = "("
sets = (format_set(arg) for arg in args) sets = (format_set(arg) for arg in args)
whole += ", ".join(sets) whole += ", ".join(sets)
whole += ")" whole += ")"
print(whole) return whole
def printp(*args):
print(textp(*args))
def prints_input(*pos): def prints_input(*pos):